Processing math: 100%
Research article

Stability switches, periodic oscillations and global stability in an infectious disease model with multiple time delays


  • Received: 23 January 2023 Revised: 05 April 2023 Accepted: 11 April 2023 Published: 23 April 2023
  • A delay differential equation model of an infectious disease is considered and analyzed. In this model, the impact of information due to the presence of infection is considered explicitly. As information propagation is dependent on the prevalence of the disease, the delay in reporting the prevalence is an important factor. Further, the time lag in waning immunity related to protective measures (such as vaccination, self-protection, responsive behaviour etc.) is also accounted. Qualitative analysis of the equilibrium points of the model is executed and it is observed that when the basic reproduction number is less unity, the local stability of the disease free equilibrium (DFE) depends on the rate of immunity loss as well as on the time delay for the waning of immunity. If the delay in immunity loss is less than a threshold quantity, the DFE is stable, whereas, it loses its stability when the delay parameter crosses the threshold value. When, the basic reproduction number is greater than unity, the unique endemic equilibrium point is found locally stable irrespective of the delay effect under certain parametric conditions. Further, we have analyzed the model system for different scenarios of both delays (i.e., no delay, only one delay, and both delay present). Due to these delays, oscillatory nature of the population is obtained with the help of Hopf bifurcation analysis in each scenario. Moreover, at two different time delays (delay in information's propagation), the emergence of multiple stability switches is investigated for the model system which is termed as Hopf-Hopf (double) bifurcation. Also, the global stability of the endemic equilibrium point is established under some parametric conditions by constructing a suitable Lyapunov function irrespective of time lags. In order to support and explore qualitative results, exhaustive numerical experimentations are carried out which lead to important biological insights and also, these results are compared with existing results.

    Citation: Anuj Kumar, Yasuhiro Takeuchi, Prashant K Srivastava. Stability switches, periodic oscillations and global stability in an infectious disease model with multiple time delays[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 11000-11032. doi: 10.3934/mbe.2023487

    Related Papers:

    [1] Tariq Mahmood, Liaqat Ali, Muhammad Aslam, Ghulam Farid . On commutativity of quotient semirings through generalized derivations. AIMS Mathematics, 2023, 8(11): 25729-25739. doi: 10.3934/math.20231312
    [2] Liaqat Ali, Yaqoub Ahmed Khan, A. A. Mousa, S. Abdel-Khalek, Ghulam Farid . Some differential identities of MA-semirings with involution. AIMS Mathematics, 2021, 6(3): 2304-2314. doi: 10.3934/math.2021139
    [3] Saba Al-Kaseasbeh, Madeline Al Tahan, Bijan Davvaz, Mariam Hariri . Single valued neutrosophic (m,n)-ideals of ordered semirings. AIMS Mathematics, 2022, 7(1): 1211-1223. doi: 10.3934/math.2022071
    [4] Pakorn Palakawong na Ayutthaya, Bundit Pibaljommee . On n-ary ring congruences of n-ary semirings. AIMS Mathematics, 2022, 7(10): 18553-18564. doi: 10.3934/math.20221019
    [5] Abdelghani Taouti, Waheed Ahmad Khan . Fuzzy subnear-semirings and fuzzy soft subnear-semirings. AIMS Mathematics, 2021, 6(3): 2268-2286. doi: 10.3934/math.2021137
    [6] Rukhshanda Anjum, Saad Ullah, Yu-Ming Chu, Mohammad Munir, Nasreen Kausar, Seifedine Kadry . Characterizations of ordered h-regular semirings by ordered h-ideals. AIMS Mathematics, 2020, 5(6): 5768-5790. doi: 10.3934/math.2020370
    [7] Gurninder S. Sandhu, Deepak Kumar . A note on derivations and Jordan ideals of prime rings. AIMS Mathematics, 2017, 2(4): 580-585. doi: 10.3934/Math.2017.4.580
    [8] Gurninder S. Sandhu, Deepak Kumar . Correction: A note on derivations and Jordan ideals in prime rings. AIMS Mathematics, 2019, 4(3): 684-685. doi: 10.3934/math.2019.3.684
    [9] Faiza Shujat, Faarie Alharbi, Abu Zaid Ansari . Weak (p,q)-Jordan centralizer and derivation on rings and algebras. AIMS Mathematics, 2025, 10(4): 8322-8330. doi: 10.3934/math.2025383
    [10] Kaiqing Huang, Yizhi Chen, Miaomiao Ren . Additively orthodox semirings with special transversals. AIMS Mathematics, 2022, 7(3): 4153-4167. doi: 10.3934/math.2022230
  • A delay differential equation model of an infectious disease is considered and analyzed. In this model, the impact of information due to the presence of infection is considered explicitly. As information propagation is dependent on the prevalence of the disease, the delay in reporting the prevalence is an important factor. Further, the time lag in waning immunity related to protective measures (such as vaccination, self-protection, responsive behaviour etc.) is also accounted. Qualitative analysis of the equilibrium points of the model is executed and it is observed that when the basic reproduction number is less unity, the local stability of the disease free equilibrium (DFE) depends on the rate of immunity loss as well as on the time delay for the waning of immunity. If the delay in immunity loss is less than a threshold quantity, the DFE is stable, whereas, it loses its stability when the delay parameter crosses the threshold value. When, the basic reproduction number is greater than unity, the unique endemic equilibrium point is found locally stable irrespective of the delay effect under certain parametric conditions. Further, we have analyzed the model system for different scenarios of both delays (i.e., no delay, only one delay, and both delay present). Due to these delays, oscillatory nature of the population is obtained with the help of Hopf bifurcation analysis in each scenario. Moreover, at two different time delays (delay in information's propagation), the emergence of multiple stability switches is investigated for the model system which is termed as Hopf-Hopf (double) bifurcation. Also, the global stability of the endemic equilibrium point is established under some parametric conditions by constructing a suitable Lyapunov function irrespective of time lags. In order to support and explore qualitative results, exhaustive numerical experimentations are carried out which lead to important biological insights and also, these results are compared with existing results.



    Semirings have significant applications in theory of automata, optimization theory, and in theoretical computer sciences (see [1,2,3]). A group of Russian mathematicians was able to create novel probability theory based on additive inverse semirings, called idempotent analysis (see[4,5]) having interesting applications in quantum physics. Javed et al. [6] identified a proper subclass of semirings known as MA-Semirings. The development of commutator identities and Lie type theory of semirings [6,7,8,9,10] and derivations [6,7,8,11,12] make this class quite interesting for researchers. To investigate commuting conditions for rings through certain differential identities and certain ideals are still interesting problems for researchers in ring theory (see for example [13,14,15,16,17,18,19]) and some of them are generalized in semirings (see [6,8,9,10,11,20]). In this paper we investigate commuting conditions of prime MA-semirings through certain differential identities and Jordan ideals (Theorems 2.5–2.8) and also study differential identities with the help of Jordan ideals (Theorem 2.3, Theorem 2.4, Theorem 2.10). In this connection we are able to generalize a few results of Oukhtite [21] in the setting of semirings. Now we present some necessary definitions and preliminaries which will be very useful for the sequel. By a semiring S, we mean a semiring with absorbing zero '0' in which addition is commutative. A semiring S is said to be additive inverse semiring if for each sS there is a unique sS such that s+s+s=s and s+s+s=s, where s denotes the pseudo inverse of s. An additive inverse semiring S is said to be an MA-semiring if it satisfies s+sZ(S),sS, where Z(S) is the center of S. The class of MA-semirings properly contains the class of distributive lattices and the class of rings, we refer [6,8,11,22] for examples. Throughout the paper by semiring S we mean an MA-semiring unless stated otherwise. A semiring S is prime if aSb={0} implies that a=0 or b=0 and semiprime if aSa={0} implies that a=0. S is 2-torsion free if for sS,2s=0 implies s=0. An additive mapping d:SS is a derivation if d(st)=d(s)t+sd(t). The commutator is defined as [s,t]=st+ts. By Jordan product, we mean st=st+ts for all s,tS. The notion of Jordan ideals was introduced by Herstein [23] in rings which is further extended canonically by Sara [20] for semirings. An additive subsemigroup G of S is called the Jordan ideal if sjG for all sS,jG. A mapping f:SS is commuting if [f(s),s]=0, sS. A mapping f:SS is centralizing if [[f(s),s],r]=0, s,rS. Next we include some well established identities of MA-semirings which will be very useful in the sequel. If s,t,zS and d is a derivation of S, then [s,st]=s[s,t], [st,z]=s[t,z]+[s,z]t, [s,tz]=[s,t]z+t[s,z], [s,t]+[t,s]=t(s+s)=s(t+t), (st)=st=st, [s,t]=[s,t]=[s,t], s(t+z)=st+sz, d(s)=(d(s)). To see more, we refer [6,7].

    From the literature we recall a few results of MA-semirings required to establish the main results.

    Lemma 1. [11] Let G be a Jordan ideal of an MA-semiring S. Then for all jG (a). 2[S,S]GG (b). 2G[S,S]G (c). 4j2SG (d). 4Sj2G (e). 4jSjG.

    Lemma 2. [11] Let S be a 2-torsion free prime MA-semiring and G a Jordan ideal of S. If aGb={0} then a=0 or b=0.

    In view of Lemma 1 and Lemma 2, we give some very useful remarks.

    Remark 1. [11]

    a). If r,s,tS,uG, then 2[r,st]uG.

    b). If aG={0} or Ga={0}, then a=0.

    Lemma 3. [12] Let G be a nonzero Jordan ideal and d be a derivation of a 2-torsion free prime MA-semiring S such that for all uG, d(u2)=0. Then d=0.

    Lemma 4. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring S. If aS such that for all gG, [a,g2]=0. Then [a,s]=0,sS and hence aZ(S).

    Proof. Define a function da:SS by da(s)=[a,s], which is an inner derivation. As every inner derivation is derivation, therefore in view of hypothesis da is derivation satisfying da(g2)=[a,g2]=0,gG. By Lemma 3, da=0, which implies that da(s)=[a,s]=0, for all sS. Hence aZ(S).

    Lemma 5. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If S is noncommutative such that for all u,vG and rS

    a[r,uv]b=0, (2.1)

    then a=0 or b=0.

    Proof. In (2.1) replacing r by ar and using MA-semiring identities, we obtain

    aa[r,uv]b+a[a,uv]rb=0 (2.2)

    Using (2.1) again, we get a[a,uv]Sb=0. By the primeness of S, we have either b=0 or a[a,uv]=0. Suppose that

    a[a,uv]=0 (2.3)

    In view of Lemma 1, replacing v by 2v[s,t] in (2.3) and using 2-torsion freeness of S, we get 0=a[a,uv[s,t]]=auv[a,[s,t]]+a[a,uv][s,t]. Using (2.3) again auv[a,[s,t]]=0 and therefore auG[a,[s,t]]={0}. By the Lemma 2, we have either aG={0} or [a,[s,t]]=0. By Remark 1, aG={0} implies a=0. Suppose that

    [a,[s,t]]=0 (2.4)

    In (2.4) replacing s by sa, we get [a,s[a,t]]+[a,[s,t]a]=0 and therefore [a,s[a,t]]+[a,[s,t]]a=0. Using (2.4) again, we get [a,s][a,t]=0. By the primeness of S, [a,s]=0 and therefore aZ(S). Hence from (2.2), we can write aS[r,uv]b={0}. By the primeness of S, we obtain a=0 or

    [r,uv]b=0 (2.5)

    In (2.5) replacing r by rs and using (2.5) again, we get [r,uv]Sb={0}. By the primeness of S, we have either b=0 or [r,uv]=0. Suppose that

    [r,uv]=0 (2.6)

    In (2.6) replacing y by 2v[s,t] and using (2.6) again, we obtain 2[r,uv[s,t]]=0. As S is 2-torsion free, [r,uv[s,t]]=0 which further gives uG[r,[s,t]]={0}. As G{0}, by Lemma 2 [r,[s,t]]=0 which shows that S is commutative, a contradiction. Hence we conclude that a=0 or b=0.

    Theorem 1. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If d1 and d2 are derivations of S such that for all uG,

    d1d2(u)=0 (2.7)

    then either d1=0 or d2=0.

    Proof. Suppose that d20. We will show that d1=0. In view of Lemma 1, replacing u by 4u2v,vG in (2.7), we obtain d1d2(4u2v)=0 and by the 2-torsion freeness of S, we have d1d2(u2v)=0. Using (2.7) again, we obtain

    d2(u2)d1(v)+d1(u2)d2(v)=0 (2.8)

    By lemma 1, replacing v by 2[r,jk]v,j,kG in (2.8), we get

    d2(u2)d1(2[r,jk]v)+d1(u2)d2(2[r,jk]v)=0

    and

    2d2(u2)[r,jk]d1(v)+2d2(u2)d1([r,jk])v+2d1(u2)[r,jk]d2(v)+2d1(u2)d2([r,jk])v=0

    Using (2.8) again and hence by the 2-torsion freeness of S, we obtain

    d2(u2)[r,jk]d1(v)+d1(u2)[r,jk]d2(v)=0 (2.9)

    In (2.9), replacing v by 4v2t,tS and using (2.9) again, we obtain

    4d2(u2)[r,jk]v2d1(t)+4d1(u2)[r,jk]v2d2(t)=0

    As S is 2-torsion free, therefore

    d2(u2)[r,jk]v2d1(t)+d1(u2)[r,jk]v2d2(t)=0 (2.10)

    In (2.10), taking t=d2(g),gG and using (2.7), we obtain

    d1(u2)[r,jk]v2d2(d2(g))=0 (2.11)

    In (2.11) writing a for d1(u2) and b for v2d2(d2(g)), we have a[r,jk]b=0,rS,j,kG.

    Firstly suppose that S is not commutative. By Lemma 5, we have a=0 or b=0. If d1(u2)=a=0, then by Lemma 3, d1=0. Secondly suppose that S is commutative. In (2.7) replacing u by 2u2, we obtain 0=d1d2(2u2)=2d1d2(u2)=4d1(ud2(u))=4(d1(u)d2(u)+ud1d2(u)). Using (2.7) and the 2-torsion freeness of S, we obtain d1(u)d2(u)=0. By our assumption S is commutative, therefore d1(u)Sd2(u)={0}. By the primeness of S, we have either d1(G)={0} or d2(G)={0}. By Theorem 2.4 of [11], we have d1=0 or d2=0. But d20. Hence d1=0 which completes the proof.

    Theorem 2. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If d1 and d2 are derivations of S such that for all uG

    d1(d2(u)+u)=0, (2.12)

    then d1=0.

    Proof. Firstly suppose that S is commutative. Replacing u by 2u2 in (2.12) and using (2.12) again, we obtain d1(u)d2(u)=0 which further implies d1(u)Sd2(u)={0}. In view of Theorem 2.4 of [11], by the primeness of S we have d1=0 or d2=0. If d2=0, then from (2.12), we obtain d1(u)=0,uG and hence by Lemma 3, we conclude d1=0. Secondly suppose that S is noncommutative. Further suppose that d20. We will show that d1=0. In (2.12) replacing u by 4u2v,vG, and using (2.12) again, we obtain 2(d2(u2)d1(v)+d1(u2)d2(v))=0. As S is 2-torsion free, therefore

    d2(u2)d1(v)+d1(u2)d2(v)=0 (2.13)

    In (2.13) replacing v by 2[r,jk]v,rS,j,k,vG, we obtain

    d2(u2)d1(2[r,jk])v+2d2(u2)[r,jk]d1(v)+d1(u2)d2(2[r,jk])v+2d1(u2)[r,jk]d2(v)=0

    As by MA-semiring identities, 2[r,jk]=2j[r,k]+2[r,j]k, by Lemma 1 2[r,jk]G. Therefore using (2.13) again and the 2-torsion freeness of S, we obtain

    d2(u2)[r,jk]d1(v)+d1(u2)[r,jk]d2(v)=0 (2.14)

    In (2.14) replacing v by 4v2t,tS and using (2.14) again, we get

    d2(u2)[r,jk]v2d1(t)+d1(u2)[r,jk]v2d2(t)=0 (2.15)

    In (2.15) taking t=t(d2(w)+w),wG, we get

    d2(u2)[r,jk]v2d1(t(d2(w)+w))+d1(u2)[r,jk]v2d2(t(d2(w)+w))=0

    and therefore

    d2(u2)[r,jk]v2d1(t)(d2(w)+w)+d2(u2)[r,jk]v2td1((d2(w)+w))

    +d1(u2)[r,jk]v2d2(t)(d2(w)+w)+d1(u2)[r,jk]v2td2(d2(w)+w)=0

    Using (2.12) and (2.15) in the last expression, we obtain

    (d1(u2))[r,jk](v2td2(d2(w)+w))=0 (2.16)

    Applying Lemma 5 on (2.15), we get either d1(u2)=0 or v2td2(d2(w)+w)=0. If d1(u2)=0 then by Lemma 3, d1=0. If v2Sd2(d2(w)+w)={0}, the by the primeness of S, we have v2=0 or d2(d2(w)+w)=0. If v2=0,vG, then G={0}, a contradiction. Suppose that for all wG

    d2(d2(w)+w)=0 (2.17)

    In (2.17)replacing w by 4z2u,z,uG, and using (2.17) again, we obtain

    d2(z2)d2(u)=0 (2.18)

    In (2.18), replacing u by 4xz2,xG and using (2.18) again, we obtain d2(z2)Gd2(z2)={0}. By Lemma 2, d2(z2)=0 and hence by Lemma 3, we conclude that d2=0. Taking d2=0 in the hypothesis to obtain d1(u)=0 and hence by Theorem 2.4 of [11], we have d1=0.

    Theorem 3. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d1 and d2 be derivations of S such that for all u,vG

    [d1(u),d2(v)]+[u,v]=0 (2.19)

    Then S is commutative.

    Proof. If d1=0 or d2=0, then from (2.19), we obtain [G,G]={0}. By Theorem 2.3 of [11] S is commutative. We assume that both d1 and d2 are nonzero. In (2.19) replacing u by 4uw2 and using MA-semiring identities and 2-torsion freeness of S, we get

    d1(u)[2w2,d2(v)]+([d1(u),d2(v)]+[u,v])2w2+u([d1(2w2),d2(v)]

    +[2w2,v])+[u,d2(v)]d1(2w2)=0

    Using (2.19) again, we get

    d1(u)[2w2,d2(v)]+[u,d2(v)]d1(2w2)=0

    and by the 2-torsion freeness of S, we have

    d1(u)[w2,d2(v)]+[u,d2(v)]d1(w2)=0 (2.20)

    Replacing u by 2u[r,jk] in (2.20) and using it again, we obtain

    d1(u)[r,jk][w2,d2(v)]+[u,d2(v)][r,jk]d1(w2)=0 (2.21)

    In (2.21) replacing u by 4su2 and using (2.21) again, we obtain

    d1(s)u2[r,jk][w2,d2(v)]+[s,d2(v)]u2[r,jk]d1(w2)=0 (2.22)

    In (2.22) replacing s by d2(v)s and then using commutator identities, we get

    d1d2(v)su2[r,jk][w2,d2(v)]=0 (2.23)

    Therefore d1d2(v)Su2[r,jk][w2,d2(v)]={0}. By the primeness of S, we obtain either d1d2(v)=0 or u2[r,jk][w2,d2(v)]=0. Consider the sets

    G1={vG:d1d2(v)=0}

    and

    G2={vG:u2[r,jk][w2,d2(v)=0}

    We observe that G=G1G2. We will show that either G=G1 or G=G2. Suppose that v1G1G2 and v2G2G1. Then v1+v2G1+G2G1G2=G. We now see that 0=d1d2(v1+v2)=d1d2(v2), which shows that v2G1, a contradiction. On the other hand 0=u2[r,jk][w2,d2(v1+v2)]=u2[r,jk][w2,d2(v1)], which shows that v1G2, a contradiction. Therefore either G1G2 or G2G1, which respectively show that either G=G1 or G=G2. Therefore we conclude that for all vG, d1d2(v)=0 or u2[r,jk][w2,d2(v)]=0. Suppose that d1d2(v)=0,vG. then by Lemma 2.1, d1=0 or d2=0. Secondly suppose that u2[r,jk][w2,d2(v)]=0,u,v,w,j,kG,rS. By Lemma 5, we have either u2=0 or [w2,d2(v)]=0. But u2=0 leads to G={0} which is not possible. Therefore [w2,d2(v)]=0 and employing Lemma 4, [d2(v),s]=0,sS. Hence by Theorem 2.2 of [22], S is commutative.

    Theorem 4. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d1 and d2 be derivations of S such that for all u,vG

    d1(u)d2(v)+[u,v]=0 (2.24)

    Then d1=0 or d2=0 and thus S is commutative.

    Proof. It is quite clear that if at least one of d1 and d2 is zero, then we obtain [G,G]={0}. By Theorem 2.3 of [11] and Theorem 2.1 of [22], S is commutative. So we only show that at least one of the derivations is zero. Suppose that d20. In (2.24), replacing v by 4vw2,wG, we obtain d1(u)d2(4vw2)+[u,4vw2]=0 and therefore using MA-semirings identities, we can write

    4d1(u)vd2(w2)+4d1(u)d2(v)w2+4v[u,w2]+4[u,v]w2=0

    In view of Lemma 1 as 2w2G, using (2.24) and the 2-torsion freeness of S, we obtain

    d1(u)vd2(w2)+v[u,w2]=0 (2.25)

    In (2.25) replacing v by 2[s,t]v, s,tS and hence by the 2-torsion freeness of S, we get

    d1(u)[s,t]vd2(w2)+[s,t]v[u,w2]=0 (2.26)

    Multiplying (2.25) by [s,t] from the left, we get

    [s,t]d1(u)vd2(w2)+[s,t]v[u,w2]=0

    and since S is an MA-semiring, therefore

    [s,t]d1(u)vd2(w2)=[s,t]v[u,w2] (2.27)

    Using (2.27) into (2.26), we obtain d1(u)[s,t]vd2(w2)+[s,t]d1(u)vd2(w2)=0. By MA-semirings identities, we further obtain [d1(u),[s,t]]Gd2(w2)={0}. By Lemma 2, we obtain either [d1(u),[s,t]]=0 or d2(w2)=0. If d2(w2)=0, then by Lemma 3, d2=0. On the other hand, if

    [d1(u),[s,t]]=0 (2.28)

    In (2.28) replacing t by st, we get [d1(u),s[s,t]]=0 and using (2.23) again [d1(u),s][s,t]=0 and therefore [d1(u),s]S[s,t]={0} and by the primeness of S, we get [S,S]={0} and hence S is commutative or [d1(u),s]=0. In view of Theorem 2.2 of [22] from [d1(u),s]=0 we have [S,S]={0} which further implies S is commutative. Hence (2.19)becomes d1(u)d2(v)=0. As above we have either d1=0 or d2=0.

    Theorem 5. Let S be a 2-torsion free prime MA-semiring and G a nonzero Jordan ideal of S. If d1, d2 and d3 be nonzero. derivations such that for all u,vG either

    1). d3(v)d1(u)+d2(u)d3(v)=0 or

    2). d3(v)d1(u)+d2(u)d3(v)+[u,v]=0.

    Then S is commutative and d1=d2.

    Proof. 1). By the hypothesis for the first part, we have

    d3(v)d1(u)+d2(u)d3(v)=0 (2.29)

    which further implies

    d3(v)d1(u)=d2(u)d3(v) (2.30)

    In (2.29) replacing u by 4uw2, we obtain

    4d3(v)d1(u)w2+4d3(v)ud1(w2)+4d2(u)w2d3(v)+4ud2(w2)d3(v)=0

    and therefore by the 2-torsion freeness of S, we have

    d3(v)d1(u)w2+d3(v)ud1(w2)+d2(u)w2d3(v)+ud2(w2)d3(v)=0 (2.31)

    Using (2.30) into (2.31), we obtain

    d2(u)[d3(v),w2]+[d3(v),u]d1(w2)=0 (2.32)

    In (2.32) replacing u by 2u[r,jk],rS,j,kG, and using (2.32) again, we get

    d2(u)[r,jk][d3(v),w2]+[d3(v),u][r,jk]d1(w2)=0 (2.33)

    In (2.33) replacing u by 4tu2,tS and using 2-torsion freeness and (2.33) again, we get

    d2(t)u2[r,jk][d3(v),w2]+[d3(v),t]u2[r,jk]d1(w2)=0 (2.34)

    Taking t=d3(v)t in (2.34) and using (2.34) again we obtain

    d2d3(v)tu2[r,jk][d3(v),w2]=0 (2.35)

    We see that equation (2.35) is similar as (2.23) of the previous theorem, therefore repeating the same process we obtain the required result.

    2). By the hypothesis, we have

    d3(v)d1(u)+d2(u)d3(v)+[u,v]=0 (2.36)

    For d3=0, we obtain [G,G]={0} and by Theorem 2.3 of [11] this proves that S is commutative. Assume that d30. From (2.36), using MA-semiring identities, we can write

    d3(v)d1(u)=d2(u)d3(v)+[u,v] (2.37)

    and

    d3(v)d1(u)+[u,v]=d2(u)d3(v) (2.38)

    In (2.36), replacing u by 4uz2, we obtain

    4(d3(v)ud1(z2)+d3(v)d1(u)z2+d2(u)z2d3(v)+ud2(z2)d3(v)+u[z2,v])+[u,v]z2)=0

    and using (2.37) and (2.38) and then 2-torsion freeness of S, we obtain

    [d3(v),u]d1(z2)+d2(u)[d3(v),z2]=0 (2.39)

    We see that (2.39) is same as (2.32) of the previous part of this result. This proves that [S,S]={0} and hence S is commutative. Also then by the hypothesis, since d30, d1=d2.

    Theorem 6. Let G be nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d1 and d2 be nonzero derivations of S such that for all u,vG

    [d2(v),d1(u)]+d1[v,u]=0 (2.40)

    Then S is commutative.

    In (2.40) replacing u by 4uw2,wG and using 2-torsion freeness and again using(2.40), we obtain

    [d2(v)+v,u]d1(w2)+d1(u)[d2(v)+v,w2]=0 (2.41)

    In (2.41) replacing u by 2u[r,jk],j,kG,rS, we obtain

    u[d2(v)+v,2[r,jk]]d1(w2)+2[d2(v)+v,u][r,jk]d1(w2)

    +ud1(2[r,jk])[d2(v)+v,w2]+2d1(u)[r,jk][d2(v)+v,w2]=0

    Using 2-torsion freeness and (2.41) again, we get

    [d2(v)+v,u][r,jk]d1(w2)+d1(u)[r,jk][d2(v)+v,w2]=0 (2.42)

    In(2.42) replacing u by 4tu2,tSand using (2.42) again, we get

    [d2(v)+v,t]u2[r,jk]d1(w2)+d1(t)u2[r,jk][d2(v)+v,w2]=0 (2.43)

    In (2.43) taking t=(d2(v)+v)t and using MA-semirings identities, we obtain

    (d2(v)+v)[d2(v)+v,t]u2[r,jk]d1(w2)+d1(d2(v)+v)tu2[r,jk][d2(v)+v,w2]

    +(d2(v)+v)d1(t)u2[r,jk][d2(v)+v,w2]=0

    and using (2.43) again, we obtain

    d1(d2(v)+v)tu2[r,jk][d2(v)+v,w2]=0 (2.44)

    By the primeness we obtain either d1(d2(v)+v)=0 or u2[r,jk][d2(v)+v,w2]=0. If d1(d2(v)+v)=0, then by Theorem 2 we have d1=0, which contradicts the hypothesis. Therefore we must suppose u2[r,jk][d2(v)+v,w2]=0. By Lemma 5, we have either u2=0 or [d2(v)+v,w2]=0. But u2=0 implies G={0} which is not possible. On the other hand applying Lemma 5, we have [d2(v)+v,r]=0,rS and therefore taking r=v,vG and [d2(v),v]+[v,v]=0 and using MA-semiring identities, we get

    [d2(v),v]+[v,v]=0 (2.45)

    As [v,v]=[v,v], from (2.45), we obtain [d2(v),v]+[v,v]=0 and therefore

    [d2(v),v]=[v,v] (2.46)

    Using (2.46) into (2.45), we get 2[d2(v),v]=0 and by the 2-torsion freeness of S, we get [d2(v),v]=0. By Theorem 2.2 of [22], we conclude that S is commutative.

    Corollary 1. Let G be nonzero Jordan ideal of a 2-torsion free prime MA-semiring S and d be a nonzero derivation of S such that for all u,vG d[v, u] = 0. Then S is commutative

    Proof. In theorem (6) taking d2=0 and d1=d, we get the required result.

    Theorem 7. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring and d2 be derivation of S. Then there exists no nonzero derivation d1 such that for all u,vG

    d2(v)d1(u)+d1(vu)=0 (2.47)

    Proof. Suppose on the contrary that there is a nonzero derivation d1 satisfying (2.47). In (2.47) replacing u by 4uw2,wG and using (2.47) again, we obtain

    d1(u)[w2,d2(v)+v]+[u,d2(v)]d1(w2)+ud1(vw2)+(uv)d1(w2)+ud1[v,w2]=0 (2.48)

    In (2.48), replacing u by u[r,jk],rS,j,kG and using (2.48) again, we get

    d1(u)[r,jk][w2,d2(v)+v]+[u,d2(v)+v][r,jk]d1(w2)=0 (2.49)

    In (2.49) replacing u by 4tu2,tS and using (2.49) again, we obtain

    d1(t)u2[r,jk][w2,d2(v)+v]+td1(u2)[r,jk][w2,d2(v)+v]

    +t[u2,d2(v)+v][r,jk]d1(w2)+[t,d2(v)+v]u2[r,jk]d1(w2)=0

    and using2-torsion freeness and (2.49) again, we obtain

    d1(t)u2[r,jk][w2,d2(v)+v]+[t,d2(v)+v]u2[r,jk]d1(w2)=0 (2.50)

    In (2.50) taking t=(d2(v)+v)t and using MA-semirings identities, we get d1(d2(v)+v)tu2[r,jk][w2,d2(v)+v]+(d2(v)+v)d1(t)u2[r,jk][w2,d2(v)+v]

    +(d2(v)+v)[t,d2(v)+v]u2[r,jk]d1(w2)=0

    Using (2.50) again, we obtain

    d1(d2(v)+v)tu2[r,jk][w2,d2(v)+v]=0 (2.51)

    that is d1(d2(v)+v)Su2[r,jk][w2,d2(v)+v]=0. Therefore by the primeness following the same process as above, we have either d1(d2(v)+v)=0 or u2[r,jk][w2,d2(v)+v]=0 for all u,v,j,k,wG,rS. If d1(d2(v)+v)=0. As d10, therefore d2(v)+v=0. Secondly suppose that u2[r,jk][w2,d2(v)+v]=0. By Lemma 5, we have either u2=0 or [w2,d2(v)+v]=0. But u2=0 implies that G={0}, a contradiction. Therefore we consider the case when [w2,d2(v)+v]=0, which implies, by Lemma 4, that [d2(v)+v,r]=0,rS and taking in particular t=vG, we have

    [d2(v),v]+[v,v]=0 (2.52)

    Also by definition of MA-semirings, we have [v,v]=[v,v]. Therefore [d2(v),v]+[v,v]=0 and therefore

    [d2(v),v]=[v,v] (2.53)

    Using (2.53) into (2.52) and then using 2-torsion freeness of S, we obtain [d(v),v]=0. By Theorem 2.2 of [22], we conclude that S is commutative. Therefore (2.47) will be rewritten as 2d1(u)d2(v)+2(d1(v)u+vd1(u))=0 and hence by the 2-torsion freeness of S, we obtain

    d1(u)d2(v)+d1(v)u+vd1(u)=0 (2.54)

    In (2.54) replacing u by 2uw and using 2-torsion freeness of S, we get

    d1(u)wd2(v)+ud1(w)d2(v)+d1(v)uw+vd1(u)w+vud1(w)=0

    and therefore

    w(d1(u)d2(v)+d1(v)u+vd1(u))+ud1(w)d2(v)+vud1(w)=0

    Using (2.54) again, we obtain

    ud1(w)d2(v)+vud1(w)=0 (2.55)

    In (2.55) replacing v by 2vz, we get

    ud1(w)d2(v)z+ud1(w)vd2(z)+vzud1(w)=0

    and therefore

    z(ud1(w)d2(v)+vud1(w))+ud1(w)vd2(z)=0

    and using (2.55) again, we get d1(w)uGd2(z)={0}. By the above Lemma 2, we have either d1(w)u=0 or d2(z)=0 and therefore by Remark 1, we have either d1(w)=0 or d2(z)=0. As d10, therefore d2=0. Therefore our hypothesis becomes d1(uv)=0 and therefore d1(u2)=0, uG. By Lemma 3, d1=0 a contraction to the assumption. Hence d1 is zero.

    We have proved the results of this paper for prime semirings and it would be interesting to generalize them for semiprime semirings, we leave it as an open problem.

    Taif University Researchers Supporting Project number (TURSP-2020/154), Taif University Taif, Saudi Arabia.

    The authors declare that they have no conflict of interest.



    [1] F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, 2001.
    [2] O. Diekmann, J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, John Wiley & Sons, 2000.
    [3] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
    [4] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [5] M. E. Alexander, C. Bowman, S. M. Moghadas, R. Summers, A. B. Gumel, B. M. Sahai, A vaccination model for transmission dynamics of influenza, SIAM J. Appl. Dyn. Syst., 3 (2004), 503–524. https://doi.org/10.1137/03060037 doi: 10.1137/03060037
    [6] A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, et al., Modelling strategies for controlling SARS outbreaks, Proc. R. Soc. B: Biol. Sci., 271 (2004), 2223–2232. https://doi.org/10.1098/rspb.2004.2800 doi: 10.1098/rspb.2004.2800
    [7] S. Lee, G. Chowell, C. Castillo-Chávez, Optimal control for pandemic influenza: the role of limited antiviral treatment and isolation, J. Theor. Biol., 265 (2010), 136–150. https://doi.org/10.1016/j.jtbi.2010.04.003 doi: 10.1016/j.jtbi.2010.04.003
    [8] X. Liu, Y. Takeuchi, S. Iwami, SVIR epidemic models with vaccination strategies, J. Theor. Biol., 253 (2008), 1–11. https://doi.org/10.1016/j.jtbi.2007.10.014 doi: 10.1016/j.jtbi.2007.10.014
    [9] Z. Qiu, Z. Feng, Transmission dynamics of an influenza model with vaccination and antiviral treatment, Bull. Math. Biol., 72 (2010), 1–33. https://doi.org/10.1007/s11538-009-9435-5 doi: 10.1007/s11538-009-9435-5
    [10] A. Kumar, P. K. Srivastava, Vaccination and treatment as control interventions in an infectious disease model with their cost optimization, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 334–343. https://doi.org/10.1016/j.cnsns.2016.08.005 doi: 10.1016/j.cnsns.2016.08.005
    [11] A. Kumar, P. K. Srivastava, Y. Takeuchi, Modeling the role of information and limited optimal treatment on disease prevalence, J. Theor. Biol., 414 (2017), 103–119. https://doi.org/10.1016/j.jtbi.2016.11.016 doi: 10.1016/j.jtbi.2016.11.016
    [12] Y. Yuan, N. Li, Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness, Phys. A: Stat. Mech. Appl., 603 (2022), 127804. https://doi.org/10.1016/j.physa.2022.127804 doi: 10.1016/j.physa.2022.127804
    [13] P. A. Gonzˊalez-Parra, S. Lee, L. Velazquez, C. Castillo-Chavez, A note on the use of optimal control on a discrete time model of influenza dynamics, Math. Biosci. Eng., 8 (2011), 183–197. doi: 10.3934/mbe.2011.8.183 doi: 10.3934/mbe.2011.8.183
    [14] S. M. Kassa, A. Ouhinou, The impact of self-protective measures in the optimal interventions for controlling infectious diseases of human population, J. Math. Biol., 70 (2015), 213–236. https://doi.org/10.1007/s00285-014-0761-3 doi: 10.1007/s00285-014-0761-3
    [15] A. Kumar, P. K. Srivastava, Y. Dong, Y. Takeuchi, Optimal control of infectious disease: Information-induced vaccination and limited treatment, Physica A: Stat. Mech. Appl., 542 (2020), 123196. https://doi.org/10.1016/j.physa.2019.123196 doi: 10.1016/j.physa.2019.123196
    [16] A. Yadav, P. K. Srivastava, A. Kumar, Mathematical model for smoking: Effect of determination and education, Int. J. Biomath., 8 (2015), 1550001. https://doi.org/10.1142/S1793524515500011 doi: 10.1142/S1793524515500011
    [17] World Health Organization (WHO), Government of Senegal boosts Ebola awareness through SMS campaign, 2014. Avaliable from: http://http://www.who.int/features/2014/senegal-ebola-sms/en/.
    [18] A. Ahituv, V. J. Hotz, T. Philipson, The responsiveness of the demand for condoms to the local prevalence of AIDS, J. Hum. Resour., 31 (1996), 869–897. https://doi.org/10.2307/146150 doi: 10.2307/146150
    [19] D. Greenhalgh, S. Rana, S. Samanta, T. Sardar, S. Bhattacharya, J. Chattopadhyay, Awareness programs control infectious disease-multiple delay induced mathematical model, Appl. Math. Comput., 251 (2015), 539–563. https://doi.org/10.1016/j.amc.2014.11.091 doi: 10.1016/j.amc.2014.11.091
    [20] Y. Liu, J. Cui, The impact of media coverage on the dynamics of infectious disease, Int. J. Biomath., 1 (2008), 65–74. https://doi.org/10.1142/S1793524508000023 doi: 10.1142/S1793524508000023
    [21] A. K. Misra, A. Sharma, V. Singh, Effect of awareness programs in controlling the prevalence of an epidemic with time delay. J. Biol. Syst., 19 (2011), 389–402. https://doi.org/10.1142/S0218339011004020 doi: 10.1142/S0218339011004020
    [22] T. Philipson, Private vaccination and public health: an empirical examination for US measles, J. Hum. Resour., 31 (1996), 611–630. https://doi.org/10.2307/146268 doi: 10.2307/146268
    [23] J. Cui, Y. Sun, H. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. Equations, 20 (2008), 31–53. https://doi.org/10.1007/s10884-007-9075-0 doi: 10.1007/s10884-007-9075-0
    [24] A. d'Onofrio, P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases, J. Theor. Biol., 256 (2009), 473–478. https://doi.org/10.1016/j.jtbi.2008.10.005 doi: 10.1016/j.jtbi.2008.10.005
    [25] S. Funk, E. Gilad, C. Watkins, V. A. A. Jansen, The spread of awareness and its impact on epidemic outbreaks, Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 6872–6877. https://doi.org/10.1073/pnas.08107621 doi: 10.1073/pnas.08107621
    [26] I. Z. Kiss, J. Cassell, M. Recker, P. L. Simon, The impact of information transmission on epidemic outbreaks, Math. Biosci., 225 (2010), 1–10. https://doi.org/10.1016/j.mbs.2009.11.009 doi: 10.1016/j.mbs.2009.11.009
    [27] Y. Li, C. Ma, J. Cui, The effect of constant and mixed impulsive vaccination on SIS epidemic models incorporating media coverage, Rocky Mt. J. Math., 38 (2008), 1437–1455. DOI: 10.1216/RMJ-2008-38-5-1437 doi: 10.1216/RMJ-2008-38-5-1437
    [28] R. Liu, J. Wu, H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math. Methods Med., 8 (2007), 153–164. https://doi.org/10.1080/17486700701425870 doi: 10.1080/17486700701425870
    [29] P. Manfredi, A. d'Onofrio, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, Springer Science & Business Media, 2013.
    [30] K. Cooke, P. Van. den Driessche, X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39 (1999), 332–352. https://doi.org/10.1007/s002850050194 doi: 10.1007/s002850050194
    [31] D. Greenhalgh, Q. J. A. Khan, F. I. Lewis, Recurrent epidemic cycles in an infectious disease model with a time delay in loss of vaccine immunity, Nonlinear Anal. Theory Methods Appl., 63 (2005), e779–e788. https://doi.org/10.1016/j.na.2004.12.018 doi: 10.1016/j.na.2004.12.018
    [32] G. Huang, Y. Takeuchi, W. Ma, D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192–1207. https://doi.org/10.1007/s11538-009-9487-6 doi: 10.1007/s11538-009-9487-6
    [33] Y. Kuang, Delay Differential Equations: with Applications in Population Dynamics, Academic Press, 1993.
    [34] N. Kyrychko, K. B. Blyuss, Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate, Nonlinear Anal. Real World Appl., 6 (2005), 495–507. https://doi.org/10.1016/j.nonrwa.2004.10.001 doi: 10.1016/j.nonrwa.2004.10.001
    [35] M. Liu, E. Liz, G. Röst, Endemic bubbles generated by delayed behavioral response: global stability and bifurcation switches in an SIS model, SIAM J. Appl. Math., 75 (2015), 75–91. https://doi.org/10.1137/140972652 doi: 10.1137/140972652
    [36] Y. Song, J. Wei, Bifurcation analysis for chen's system with delayed feedback and its application to control of chaos, Chaos, Solitons Fractals, 22 (2004), 75–91. https://doi.org/10.1016/j.chaos.2003.12.075 doi: 10.1016/j.chaos.2003.12.075
    [37] L. Wen, X. Yang, Global stability of a delayed SIRS model with temporary immunity, Chaos, Solitons Fractals, 38 (2008), 221–226. https://doi.org/10.1016/j.chaos.2006.11.010 doi: 10.1016/j.chaos.2006.11.010
    [38] T. Cheng, X. Zou, A new perspective on infection forces with demonstration by a DDE infectious disease model, Math. Biosci. Eng., 19 (2022), 4856–4880. doi: 10.3934/mbe.2022227 doi: 10.3934/mbe.2022227
    [39] A. d'Onofrio, P. Manfredi, E. Salinelli, Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases, Theor. Popul. Biol., 71 (2007), 301–317. https://doi.org/10.1016/j.tpb.2007.01.001 doi: 10.1016/j.tpb.2007.01.001
    [40] P. K. Srivastava, M. Banerjee, P. Chandra, A primary infection model for HIV and immune response with two discrete time delays, Differ. Equations Dyn. Syst., 18 (2010), 385–399. https://doi.org/10.1007/s12591-010-0074-y doi: 10.1007/s12591-010-0074-y
    [41] P. K. Srivastava, P. Chandra, Hopf bifurcation and periodic solutions in a dynamical model for HIV and immune response, Differ. Equations Dyn. Syst., 16 (2008), 77–100. https://doi.org/10.1007/s12591-008-0006-2 doi: 10.1007/s12591-008-0006-2
    [42] H. Zhao, Y. Lin, Y. Dai, An SIRS epidemic model incorporating media coverage with time delay, Comput. Math. Methods Med., 2014 (2014). https://doi.org/10.1155/2014/680743 doi: 10.1155/2014/680743
    [43] Z. Lv, X. Liu, Y. Ding, Dynamic behavior analysis of an SVIR epidemic model with two time delays associated with the COVID-19 booster vaccination time, Math. Biosci. Eng., 20 (2023), 6030–6061. https://doi.org/10.3934/mbe.2023261 doi: 10.3934/mbe.2023261
    [44] Y. Ma, Y. Cui, M. Wang, Global stability and control strategies of a SIQRS epidemic model with time delay, Math. Methods Appl. Sci., 45 (2022), 8269–8293. https://doi.org/10.1002/mma.8309 doi: 10.1002/mma.8309
    [45] A. Mezouaghi, S. Djillali, A. Zeb, K.S. Nisar, Global proprieties of a delayed epidemic model with partial susceptible protection, Math. Biosci. Eng., 19 (2022), 209–224. https://doi.org/10.3934/mbe.2022011 doi: 10.3934/mbe.2022011
    [46] H. Yang, Y. Wang, S. Kundu, Z. Song, Z. Zhang, Dynamics of an SIR epidemic model incorporating time delay and convex incidence rate, Results Phys., 32 (2022), 105025. https://doi.org/10.1016/j.rinp.2021.105025 doi: 10.1016/j.rinp.2021.105025
    [47] A. Kumar, P. K. Srivastava, A. Yadav, Delayed information induces oscillations in a dynamical model for infectious disease, Int. J. Biomath., 12 (2019), 1950020. https://doi.org/10.1142/S1793524519500207 doi: 10.1142/S1793524519500207
    [48] M. V. Barbarossa, M. Polner, G. Röst, Stability switches induced by immune system boosting in an sirs model with discrete and distributed delays, SIAM J. Appl. Math., 77 (2017), 905–923. https://doi.org/10.1137/16M1077234 doi: 10.1137/16M1077234
    [49] M. V. Barbarossa, G. Röst, Immuno-epidemiology of a population structured by immune status: a mathematical study of waning immunity and immune system boosting, J. Math. Biol., 71 (2015), 1737–1770. https://doi.org/10.1007/s00285-015-0880-5 doi: 10.1007/s00285-015-0880-5
    [50] D. Wodarz, Killer Cell Dynamics: Mathematical and Computational Approaches to Immunology, Springer, 2007.
    [51] Q. An, E. Beretta, Y. Kuang, C. Wang, H. Wang, Geometric stability switch criteria in delay differential equations with two delays and delay dependent parameters, J. Differ. Equations, 266 (2019), 7073–7100. https://doi.org/10.1016/j.jde.2018.11.025 doi: 10.1016/j.jde.2018.11.025
    [52] X. Lin, H. Wang, Stability analysis of delay differential equations with two discrete delays, Can. Appl. Math. Q., 20 (2012), 519–533.
    [53] D. Li, B. Chai, W. Liu, P. Wen, R. Zhang, Qualitative analysis of a class of SISM epidemic model influenced by media publicity, Math. Biosci. Eng., 17 (2020), 5727–5751. https://doi.org/10.3934/mbe.2020308 doi: 10.3934/mbe.2020308
    [54] A. Yadav, P. K. Srivastava, The impact of information and saturated treatment with time delay in an infectious disease model, J. Appl. Math. Comput., 66 (2021), 277–305. https://doi.org/10.1007/s12190-020-01436-2 doi: 10.1007/s12190-020-01436-2
    [55] Z. Zhang, G. ur Rahman, J. F. Gómez-Aguilar, J. Torres-Jiménez, Dynamical aspects of a delayed epidemic model with subdivision of susceptible population and control strategies, Chaos, Solitons Fractals, 160 (2022), 112194. https://doi.org/10.1016/j.chaos.2022.112194 doi: 10.1016/j.chaos.2022.112194
    [56] H. Zhao, M. Zhao, Global hopf bifurcation analysis of an susceptible-infective-removed epidemic model incorporating media coverage with time delay, J. Biol. Dyn., 11 (2017), 8–24. https://doi.org/10.1080/17513758.2016.1229050 doi: 10.1080/17513758.2016.1229050
    [57] Y. Liu, J. Wei, Bifurcation analysis in delayed nicholson blowflies equation with delayed harvest, Nonlinear Dyn., 105 (2021), 1805–1819. https://doi.org/10.1007/s11071-021-06651-5 doi: 10.1007/s11071-021-06651-5
    [58] S. Ruan, J. Wei, On the zeros of transcendental functions with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impuls. Syst. A: Math. Anal., 10 (2003), 863–874.
    [59] X. Wang, A simple proof of descartes's rule of signs, Am. Math. Mon., 111 (2004), 525. https://doi.org/10.1080/00029890.2004.11920108 doi: 10.1080/00029890.2004.11920108
    [60] H. I. Freedman, V. S. H. Rao, The trade-off between mutual interference and time lags in predator-prey systems, Bull. Math. Biol., 45 (1983), 991–1004. https://doi.org/10.1016/S0092-8240(83)80073-1 doi: 10.1016/S0092-8240(83)80073-1
    [61] J. K. Hale, Functional Differential Equations, Springer, New York, 1977.
    [62] J. P. La Salle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, SIAM, Philadelphia, 1976.
    [63] H. Jiang, T. Zhang, Y. Song, Delay-induced double hopf bifurcations in a system of two delay-coupled van der pol-duffing oscillators, Int. J. Bifurcation Chaos, 25 (2015), 1550058. https://doi.org/10.1142/S0218127415500583 doi: 10.1142/S0218127415500583
    [64] H. Zang, T. Zhang, Y. Zhang, Stability and bifurcation analysis of delay coupled van der pol-duffing oscillators, Nonlinear Dyn., 75 (2014), 35–47. https://doi.org/10.1007/s11071-013-1047-9 doi: 10.1007/s11071-013-1047-9
    [65] M. Adimy, F. Crauste, S. Ruan, Periodic oscillations in leukopoiesis models with two delays, J. Theor. Biol., 242 (2006), 288–299. https://doi.org/10.1016/j.jtbi.2006.02.020 doi: 10.1016/j.jtbi.2006.02.020
  • This article has been cited by:

    1. Tariq Mahmood, Liaqat Ali, Muhammad Aslam, Ghulam Farid, On commutativity of quotient semirings through generalized derivations, 2023, 8, 2473-6988, 25729, 10.3934/math.20231312
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1978) PDF downloads(140) Cited by(10)

Figures and Tables

Figures(20)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog