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Abstract: A delay differential equation model of an infectious disease is considered and analyzed.
In this model, the impact of information due to the presence of infection is considered explicitly. As
information propagation is dependent on the prevalence of the disease, the delay in reporting the preva-
lence is an important factor. Further, the time lag in waning immunity related to protective measures
(such as vaccination, self-protection, responsive behaviour etc.) is also accounted. Qualitative analysis
of the equilibrium points of the model is executed and it is observed that when the basic reproduction
number is less unity, the local stability of the disease free equilibrium (DFE) depends on the rate of
immunity loss as well as on the time delay for the waning of immunity. If the delay in immunity loss is
less than a threshold quantity, the DFE is stable, whereas, it loses its stability when the delay parameter
crosses the threshold value. When, the basic reproduction number is greater than unity, the unique en-
demic equilibrium point is found locally stable irrespective of the delay effect under certain parametric
conditions. Further, we have analyzed the model system for different scenarios of both delays (i.e., no
delay, only one delay, and both delay present). Due to these delays, oscillatory nature of the population
is obtained with the help of Hopf bifurcation analysis in each scenario. Moreover, at two different time
delays (delay in information’s propagation), the emergence of multiple stability switches is investigated
for the model system which is termed as Hopf-Hopf (double) bifurcation. Also, the global stability of
the endemic equilibrium point is established under some parametric conditions by constructing a suit-
able Lyapunov function irrespective of time lags. In order to support and explore qualitative results,
exhaustive numerical experimentations are carried out which lead to important biological insights and
also, these results are compared with existing results.
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1. Introduction

Mathematical models have been found a successful tool to understand the underlying dynamics of
infectious diseases. This eventually helps in controlling epidemic threats and related consequences
so that effective and applicable control measures can be developed [1–3]. A large number of mathe-
matical models, after the fundamental work of Kermack and McKendrick [4], have been formulated
and analyzed to comprehend the dynamics of disease transmission and progression [1–3, 5–9]. It is
important to mention here that in the last few years, various infectious diseases such as SARS, in-
fluenza, Ebola, Zika and most recent COVID-19 have posed serious challenges and socio-economic
consequences worldwide. Therefore, researchers are attracted to study various control strategies so
that limited resources can be best utilized. For that various control interventions: pharmaceutical and
non-pharmaceutical and their suitable combination are an important area of study [5,8,10–12]. Educa-
tion, awareness, information, isolation, social distancing etc. are considered as the non-pharmaceutical
controls [10, 11, 13–16].

Nowadays, during and after the outbreaks of diseases, it has been observed that individuals change
their behaviour due to the effect of information generated via global connectivity of social media,
educational campaigns etc. which eventually alters the progression of infectious diseases [17–22].
Therefore, researchers have intended to study the effect of behaviour influencing factors induced by
information on the spread of infectious diseases. Researchers have studied the effect of information
on model dynamics, using it either on the force of infection or by making a subclass of aware popula-
tion [14, 20, 21, 23–29].

The time lags/delays are inherent in natural, biological as well as man made systems and they
play a crucial role in the disease dynamics as well. Moreover, the effect of time delays, appeared in
various interactions during the disease progression, has been well studied and explored in literature.
Delay differential equation models have been used to explain different kinds of time lags in biological
system for example delay in infection (disease transmission), maturation, waning immunity etc. [30–
37]. These delay models show rich and complex dynamics leading to different kind of bifurcations,
instability of equilibria, periodic solutions etc. [33, 35, 36, 38–42]. However, study of multiple delay
models is challenging as it increases the complexity of the system and analysis.

In 1999, an epidemic model which accounts for the effect of maturation delay in the growth of
population was proposed and analyzed by Cooke et al. [30]. For R0 > 1, authors found that the disease
will remain endemic in the population for all the time, either at the equilibrium value or show oscilla-
tions around it. Further, in 2005, Greenhalgh et al. proposed an SIRS model with vaccination effect
on the susceptible population and the effect of delay on waning the vaccine-induced immunity [31].
Analytically, the existence of Hopf bifurcation was established by the authors. In 2005, Kyrychko et
al. proposed and analyzed a delay differential equation model in which they used a nonlinear force of
infection along with delay effect in loss of vaccine immunity [34]. When the time lag in loss of vaccine
immunity crosses a threshold quantity, the global stability of the infected equilibrium was established
by authors. In 2008, a delayed SIRS model along with temporary immunity was formulated and ex-
plored by Wen et al. and the global stability of the infected equilibrium was shown by constructing a
Lyapunov function [37]. Further, in 2010, various epidemiological models such as SIR, SIS, SEIR and
SEI along with time delay effect and general force of infection term were proposed by Huang et al. and
they studied their global stability properties under time delay effect [32].
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There are some recent developments in this direction that are related to our study and some of
them are discussed in the following [43–46]. In 2022, Mezouaghi and their coworkers proposed a
delayed epidemic model in which they included a separate class of protected individuals [45]. They
have established the global stability of disease free and endemic equilibrium points by constructing
Lyapunov functions. Further, Yang and others formulated an epidemic model which quantifies a convex
type of force of infection and a delay effect in recovery rate [46]. They proved the global exponential
stability of endemic equilibrium point along with the existence of Hopf bifurcation and their stability
and direction. Recently, Lv et al. developed an SVIR model which accounts for the effect of two delays
related to COVID-19 booster vaccination and failure of antibody (waning immunity) [43]. The authors
have explored the dynamic properties of the model consisting of local and Hopf bifurcation analysis.
They estimated the model parameters from the real data set and numerically validated the obtained
analytical results.

In 2017, Kumar et al. [11] have considered the growth of information as function of infective at
instantaneous time. However, in practice, reporting the disease may not be possible instantaneously
and hence, there is always a time lag in the report by media and health agencies after the outbreak.
Thus, the dissemination/propagation of information about the disease prevalence may be affected by
this time lag. So this delay in reporting these infected individuals may have an impact on generated
information. In order to quantify this factor, Kumar et al. [47] have considered this delay effect in their
model and observed important insights due to delay in reporting. As we are aware that vaccination
and recovery provide a certain immunity to fight with infection but this immunity may not have long-
term effects and hence, waning takes place. Therefore, the waning immunity is one of the crucial
factors which leads to the high reoccurrence of infectious diseases such as measles, chickenpox etc.
because recovered or immunized individuals will again join the susceptible class [48, 49]. Moreover,
it is very difficult to determine the duration of protection level through any kind of immunity either
vaccine-induced or natural and it may vary from the case to case [50]. Therefore, time lag in waning
the immunity becomes very important to quantify in the modeling process. In some of the studies, it is
found that this kind of delay gives complex dynamics [48, 49]. Keeping, these crucial factors in mind,
in this study, we consider two discrete time delays in the model. First, we consider the delay effect
in the growth of information but assume the growth function as a linear function of infective which
is meaningful if we consider relatively low infection persistence. Second, we quantify another delay
in the waning immunity of individuals in the recovered class related to loss of protective measures
(such as vaccination, self-protection, responsive behaviour etc.) with the aim to explore its impact
mathematically and biologically. Thus, the main objective of this study is to explore the impact of
above mentioned time delays on the disease dynamics and we would like to mention here that to the
best of the author’s knowledge, this type of particular setup has not been explored much in the literature
though delay models have been analyzed but not the impact of information and immunity loss together
in delay context. Consideration of two delays in a model itself increases huge mathematical complexity
which will be more challenging. One can refer to articles [51, 52] for more details of mathematical
difficulties that arise in two delay model systems.

The delay models concerning information have been studied in the literature in different modeling
sets up. For example see references [19, 21, 42, 53–56]. Misra et al. in 2011, proposed a model for
the dynamics of infectious diseases in which susceptible individuals become aware due to awareness
driven by media with delay effect [21]. Authors have shown the occurrence of oscillations via Hopf
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bifurcation due to the delay effect. Zhao et al. in 2014, considered an SIRS model which accounts for
the media impact on the force of infection along with delay effect [42]. They found that the disease free
equilibrium is locally stable and also observed that the periodic solutions bifurcate around the infected
equilibrium via Hopf bifurcation at a critical value of the delay. Further global Hopf bifurcation is also
established for the model system. Liu et al. in 2015, proposed and analyzed an SIS epidemic model
which accounts for the effect of delayed behavioural response on the force of infection [35]. They
found that different forms of the delayed behavioural response exhibit various kinds of characteristics
such as oscillations via Hopf and epidemic bubble.

Greenhalgh et al. in 2015, formulated an epidemic model in which the effect of awareness programs
on the dynamics of diseases has been incorporated [19]. Further, the authors have extended their model
to the corresponding delay model and observed that the delay induces oscillations via Hopf bifurcation.
Uniform persistence of the disease with delay effect has also been established by authors. In 2017, Zhao
et al. formulated an SIR epidemic model by quantifying the delayed effect of awareness driven by
media in force of infection term [56]. They performed the model analysis and found that at the critical
value of the delay, an endemic equilibrium loses its stability and bifurcates into periodic oscillations via
Hopf bifurcation. But these models have incorporated the effect of information differently. However,
the results obtained in our study match with them in principle, i.e., we observe oscillations in the
populations due to the presence of delays. Li and others, in 2020, proposed an epidemic model which
accounts for the effect of media publicity and found that shortening the delay of media reports may
gradually decrease the infection from the population [53]. Further, in 2021, an SIRS epidemic model
along with delay effect in information-induced force of infection term was formulated by Yadav and
Srivastava in which treatment is in saturation type [54]. They found that the model system exhibits the
existence of oscillatory behaviour due to the delay effect whereas, the saturation in treatment leads to
the existence of multiple endemic equilibrium points. Recently, in 2022, Zhang and others formulated
a compartmental model in which the susceptible population was divided into three subclasses due to
the effect of awareness along with delay in immunity loss [55]. Authors explored the local dynamical
properties such as local stability and Hopf bifurcation.

The rest of the paper is presented in the following order: in the next section, a delay mathematical
model is proposed which contains two discrete delays. Further, the model analysis is performed for
different cases of time delays in consecutive sections followed by numerical validation. The local
bifurcations analysis along with the global stability of the equilibrium point is established in each case.

2. The proposed delay model

A mathematical model is formulated, in this section, which accounts for the effect of two different
time delays: one in the growth of information and another in the waning of immunity. The model given
by Kumar et al. [11] is modified to study the dynamics along with the modified rate equation of the
information’s dynamics. As in practice, there is always a time needed to lose the immunity related to
protection. Therefore, in this model, the effect of delay is accounted for in the waning immunity of the
recovered population. For this, a time delay τ1 > 0 is considered when recovered individuals will move
to the susceptible class after losing the immunity. Also, there is always a significant time required for
health agencies to measure the approximate cumulative density of the infective population and thus
naturally a time delay comes in the dissemination of information generated by them. Therefore, during
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the outbreak, the effect of time lags or delays must be quantified in the growth factor of information to
make the model dynamics more realistic. Therefore, a time delay τ2 > 0 is quantified in the growth of
information as the information at time t will be measured by the infective population present at time
t − τ2. Keeping the above facts, the proposed delay differential equation model is given by

dS (t)
dt

= Λ − βS (t)I(t) − µS (t) − u1dZ(t)S (t) + δ0R(t − τ1),

dI(t)
dt

= βS (t)I(t) − (µ + δ + γ)I(t), (2.1)

dR(t)
dt

= γI(t) + u1dZ(t)S (t) − µR(t) − δ0R(t − τ1),

dZ(t)
dt

= aI(t − τ2) − a0Z(t),

with the initial population size S (θ) = S 0 ≥ 0, I(θ) = I0 ≥ 0,R(θ) = R0 ≥ 0 and Z(θ) = Z0 ≥ 0 where
θ ∈ [−τ, 0], where τ = max{τ1, τ2}. Also, the initial condition lies in the Banach space of continuous
functions C([−τ, 0],R4

+).
In this study, three sub-populations (S (t)-susceptible, I(t)-infective, R(t)-removed) of the entire

population (N(t)) are considered to study at any given time t. Also, the density of the information is
measured by the variable Z(t) which depends on the cumulative count of the infective as well as other
social media/activities [11, 39]. Thus, the information variable Z(t) dimensionally follows the number
of infected individuals or prevalence of the disease [39]. Here, the growth of the susceptible population
is given by parameter Λ. Natural mortality and disease related deaths are measured by the parameters
µ and δ respectively whereas γ represents the recovery of the infected population. A homogeneously
mixed population and a mass action type interaction between susceptible and infective are assumed
for the disease transmission with the rate β. The loss of immunity is represented by the parameter δ0

which consists of the loss of natural immunity as well as immunity of protective measures. The factor
u1dZ(t)S (t) is quantified as the information-induced behavioural response of susceptible individuals
with response rate u1d. Where the parameter u1 is the response intensity with 0 ≤ u1 ≤ 1 and the
d denotes the information interaction rate that influences an individual’s behaviour. The growth of
information (Z) and their natural degradation are measured by the parameters a and a0 respectively.

3. Qualitative analysis of the model

This section focuses to study the qualitative insight of the mathematical model by investigating the
stability of equilibrium points, and the existence of bifurcations such as Hopf bifurcation and Hopf-
Hopf bifurcation due to considered delays. For this purpose, first, the boundedness and positivity of
the solutions are established.

3.1. Positivity and boundedness

From the model system (2.1) for t ∈ [0, τ], the solution are given as

S (t) = e−
∫ t

0 (βI+µ+dZ)dξ[S (0) +

∫ t

0
(Λ + δ0R(t − τ1))e−

∫ t
0 (βI+µ+dZ)dξdξ],
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I(t) = I(0)e−
∫ t

0 (µ+δ+γ−βI)dξ, (3.1)

R(t) = e−µt[R(0) +

∫ t

0
(γI + u1dZS − δ0R(t − τ1))e−µξdξ],

Z(t) = e−a0t[Z(0) +

∫ t

0
aI(t − τ2)e−a0ξdξ],

Clearly, from the second equation of (3.1), we have I(t) ≥ 0. It is also clear from the third equation,
R(t) may or may not be positive (refer to Claim 1 of [57]). Following similar argument from Lv et
al. [43], during the outbreak, the count of I(t) and R(t) may be very large than the R(t − τ1), thus it is
reasonable to assume γI+u1dZS −δ0R(t−τ1) positive which leads the R(t) > 0 and hence, R(t−τ1) > 0.
Using, the positivity of R(t) and I(t), we have S (t) > 0 and Z(t) > 0. Further, in order to establish the
bound of the population, we consider from above that all the sub-populations will remain positive for
all time when the initial populations are positive. Further, notice that the entire population N(t), in the
model system (2.1), follows the following differential equation

dN(t)
dt

= Λ − µN(t) − δI(t) ≤ Λ − µN(t).

Therefore, we have lim sup
t→∞

N(t) ≤ Λ
µ

. Clearly, all the sub-populations (S (t), I(t) and R(t)) are bounded

by Λ
µ

. Moreover, using the bound of I, the last equation of the model system (2.1) implies lim sup
t→∞

Z(t) ≤
aΛ
a0µ

. Using the above facts, the following positive invariant set describes the biologically feasible region
for the model system (2.1):

Σ =

{
(S (t), I(t),R(t),Z(t)) ∈ R4

+ | 0 ≤ S (t), I(t),R(t) ≤
Λ

µ
, 0 ≤ Z(t) ≤

aΛ

a0µ

}
.

3.2. Equilibrium points of the model

The basic reproduction number of the model system (2.1) (as computed in Kumar et al. [11]) is
given below:

R0 =
Λβ

µ(µ + δ + γ)
.

The model (2.1) have following equilibrium points:

(i) a disease free equilibrium E1 =
(

Λ
µ
, 0, 0, 0

)
which exists always and unconditionally, and

(ii) a unique endemic equilibrium E2 = (S ∗, I∗,R∗,Z∗), which exists if and only if R0 > 1. Here, S ∗ =
(µ+δ+γ)

β
, R∗ = I∗

µ+δ0

(
γ +

du1a(µ+δ+γ)
a0β

)
, Z∗ = aI∗

a0
and I∗ = −C

B , where B =
µ(µ+δ+γ)+δ0(µ+δ)

(µ+δ0) +
µdu1a(µ+δ+γ)
βa0(µ+δ0)

and C = Λ
(

1
R0
− 1

)
.

The stability results obtained in Kumar et al. [11] are restated below for the case of no delay (τ1 =

τ2 = 0).

Theorem 1. [11] For τ1 = τ2 = 0,

(i) the disease free equilibrium E1 of the system (2.1) is locally asymptotically stable if R0 < 1 and
is unstable if R0 > 1,
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(ii) if R0 > 1, then the unique endemic equilibrium E2 is locally asymptotically stable provided
following conditions are satisfied:

P1P2 > P3 and P1(P2P3 − P1P4) > P2
3.

Here, P1 = a0+2µ+δ0+βI∗+du1Z∗, P2 = a0(µ+δ0)+(µ+a0)(µ+βI∗+du1Z∗)+δ0(µ+βI∗)+β2S ∗I∗,
P3 = βI∗((a0 + µ)(µ + δ + γ) + δ0(µ + δ)) + µa0(µ + βI∗ + du1Z∗) + a0δ0(µ + βI∗) + adu1βS ∗I∗ and
P4 = βa0I∗(µ(µ + δ + γ) + δ0(µ + δ)) + aµβdu1S ∗I∗.

3.3. Stability results of the delay model

Stability of the equilibrium points of the delay model (2.1) are established in the subsequent parts
when delays are present.

3.3.1. Stability properties of the disease free equilibrium E1

Theorem 2. (i) The disease free equilibrium E1 is locally asymptotically stable for any τ1, τ2 ≥ 0, if
R0 < 1 and δ0 ≤ µ.

(ii) The disease free equilibrium E1 is locally asymptotically stable for 0 ≤ τ1 < τ̂1 and τ2 ≥ 0, if
R0 < 1 and δ0 > µ. Here

τ̂1 =
1√

δ2
0 − µ

2
arctan

−
√
δ2

0 − µ
2

µ

 .
(iii) If R0 > 1, the disease free equilibrium E1 is unstable for any τ1, τ2 ≥ 0.

Proof. The characteristic equation at E1 is given by,

∆(λ, τ1, τ2) = det(λI4 − (JE1 + e−λτ1 J2 + e−λτ2 J3)) = 0.

where, JE1 =


−µ −βΛ

µ
0 −du1

Λ
µ

0 βΛ
µ
− (µ + δ + γ) 0 0

0 γ −µ du1
Λ
µ

0 0 0 −a0

, J2 =


0 0 δ0 0
0 0 0 0
0 0 −δ0 0
0 0 0 0

,

J3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 a 0 0

 and I4 is the identity matrix of order four. Now

∆(λ, τ1, τ2) = (λ + µ)(λ + a0)(λ − (µ + δ + γ)(R0 − 1))(λ + µ + δ0e−λτ1) = 0.

Hence, the eigenvalues are λ = −a0,−µ, (µ + δ + γ)(R0 − 1) which are negative if R0 < 1. The remain-
ing eigenvalues are solution to

λ + µ + δ0e−λτ1 = 0. (3.2)

When τ1 = 0, the solution is λ = −µ − δ0 < 0. For τ1 > 0, let us suppose that λ = iω(ω > 0) is a pure
imaginary root of the Equation 3.2. Further, the real and imaginary parts are separated as follows

µ + δ0 cos(ωτ1) = 0, ω − δ0 sin(ωτ1) = 0, (3.3)
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which provides ω2 = δ2
0 − µ

2 > 0 if δ0 > µ.

Corresponding to ω =

√
δ2

0 − µ
2 for δ0 > µ, the Eq (3.3) gives

τ1 = τ̂1 =
1√

δ2
0 − µ

2
arctan

−
√
δ2

0 − µ
2

µ

 .
When δ0 ≤ µ, the Eq (3.3) has no positive solution. Hence, the theorem is proven.

Example 1. Here, we shall numerically support the aforesaid analytical results for the stability
properties of the disease free equilibrium with the help of model parameters which are selected as:
Λ = 5, β = 0.003, µ = 0.04, d = 0.17, δ = 0.5, δ0 = 0.02, a = 0.1, a0 = 0.1, γ = 0.1, u1 = 0.9. For
this set of model parameters, the delay model induces only disease free equilibrium E1 = (125, 0, 0, 0)
as in this case R0 = 0.585 < 1. Clearly, µ > δ0 which ensures the local stability of the disease free
equilibrium E1 for all time lags τ1, τ2 ≥ 0 (Theorem 2(i)) and the corresponding numerical result is
given in Figure 1.
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Figure 1. Plot of population trajectories which shows stability of E1 for R0 < 1 and µ > δ0.

Further, we choose δ0 = 0.4 (> µ = 0.04) except with the same parameters as above. In this case,
the model has the same disease free equilibrium (E1) and R0 along with the threshold value of the
time delay τ1 as τ̂1 = 4.198. Clearly from Theorem 2(ii), when the delay τ1 < τ̂1, the disease free
equilibrium E1 is locally stable for all τ2 ≥ 0 and the corresponding obtained results are shown in
Figure 2. Whereas, when τ1 > τ̂1, the disease free equilibrium E1 loses its stability and Figure 3 shows
the corresponding result.

Remark 1. As we have assumed previously that the population is positive, so Figure 3(a) is not bio-
logically feasible due to oscillations in the negative zone though it is mathematically sound to give the
instability nature or property of the disease free equilibrium E1.

3.3.2. Stability properties of the endemic equilibrium E2

Here, we shall establish the local stability of the endemic equilibrium E2 when both the time lags
are present in the system. For this, around endemic equilibrium E2, we linearise the delay model (2.1)
as.

dY(t)
dt

= J4Y(t) + J2Y(t − τ1) + J3Y(t − τ2). (3.4)
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Figure 2. Plot of population trajectories which shows stability of E1 for R0 < 1, µ < δ0 and
τ1 = 3.5 < τ̂1 = 4.198, τ2 ≥ 0.
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Figure 3. Plot of population trajectories which shows instability of E1 for R0 < 1, µ < δ0

and τ1 = 5 > τ̂1 = 4.198, τ2 ≥ 0.

Here, J4 =


−(µ + βI∗ + du1Z∗) −βS ∗ 0 −du1S ∗

βI∗ 0 0 0
du1Z∗ γ −µ du1S ∗

0 0 0 −a0

, Y(t) = (S (t), I(t),R(t),Z(t))T . Here, J2 and

J3 are defined as in the previous subsection.
For the linearized system (3.4), the characteristic equation is given by,

D(λ, τ1, τ2) = det(λI4 − (J4 + e−λτ1 J2 + e−λτ2 J3)) = 0,

with four order identity matrix I4. Further, it can be rewritten as

D(λ, τ1, τ2) = λ4 + A1λ
3 + A2λ

2 + A3λ+ A4 +e−λτ1(B1λ
3 + B2λ

2 + B3λ+ B4)+e−λτ2(C1λ+C2) = 0, (3.5)

where

A1 = a0 + 2µ + βI∗ + du1Z∗ > 0
A2 = a0µ + (µ + a0)(µ + βI∗ + du1Z∗) + β2S ∗I∗ > 0
A3 = βI∗(a0 + µ)(µ + δ + γ) + µa0(µ + βI∗ + du1Z∗) > 0
A4 = βa0I∗µ(µ + δ + γ) > 0
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B1 = δ0 > 0
B2 = δ0(a0 + µ + βI∗) > 0
B3 = a0δ0(µ + βI∗) + βI∗δ0(µ + δ) > 0
B4 = βa0I∗δ0(µ + δ) > 0
C1 = adu1βS ∗I∗ > 0
C2 = µadu1βS ∗I∗ > 0.

Notice that, infinitely many complex roots can be obtained from the characteristic Eq (3.5) due to its
transcendental nature in λ. We consider a similar argument for the stability of E2 as discussed in [58].
Thus, the sign of real parts of the roots of the characteristic Eq (3.5) will determine the stability nature
of endemic equilibrium E2. The negative real parts will lead to local stability whereas the instability
will rise in the case when a root crosses the imaginary axis (existence of a purely imaginary root).
Also, the transcendental nature of Eq (3.5) infers that it is very tedious to determine the sign of roots
of the Eq (3.5). Thus, the sign will change when the roots of the Eq (3.5) cross the imaginary axis as
per Rouche’s Theorem and continuity in time delays (τ1 and τ2).

The subsequent sections will determine the stability properties of the endemic equilibrium point E2

in different scenarios.

4. Case-I: τ1 > 0 and τ2 = 0

In this section, the stability properties of E2 under τ1 > 0 and τ2 = 0 will be examined and the
corresponding characteristic Eq (3.5) is given by,

D(λ, τ1) = λ4 + A1λ
3 + A2λ

2 + (A3 + C1)λ + (A4 + C2) + e−λτ1(B1λ
3 + B2λ

2 + B3λ + B4) = 0. (4.1)

It is noted that when τ1 = 0, the Eq (4.1) possess roots with negative real parts (Theorem 1) under the
parametric conditions P1P2 > P3 and P1(P2P3 − P1P4) > P2

3 where P1 = A1 + B1, P2 = A2 + B2, P3 =

A3 + B3 + C1 and P4 = A4 + B4 + C2. Further, in order to get the purely imaginary roots when τ1 > 0,
we replace λ = iω in the Eq (4.1) and the corresponding real and imaginary parts are listed below:

ω4 − A2ω
2 + A4 + C2 = (B2ω

2 − B4) cosωτ1 + (B1ω
3 − B3ω) sinωτ1. (4.2)

(A3 + C1)ω − A1ω
3 = (B1ω

3 − B3ω) cosωτ1 − (B2ω
2 − B4) sinωτ1. (4.3)

Further, we square and add both the Eqs (4.2) and (4.3), we have

ω8 + A11ω
6 + A12ω

4 + A13ω
2 + A14 = 0. (4.4)

Here, A11 = A2
1 − 2A2 − B2

1, A12 = A2
2 + 2(A4 + C2) − 2A1(A3 + C1) − B2

2 + 2B1B3, A13 = (A3 + C1)2 −

2A2(A4 + C2) + 2B2B4 − B2
3 and A14 = (A4 + C2)2 − B2

4.
By substituting m = ω2 in Eq (4.4), we have

ψ(m) = m4 + A11m3 + A12m2 + A13m + A14 = 0. (4.5)

It is very clear that the Eq (4.5) will have all roots with negative real part if the Routh-Hurwitz criterion
holds true for (4.5) which gives the following result.
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Theorem 3. The unique endemic equilibrium E2 of the delay system (2.1) will be locally asymptotically
stable for all τ1 > 0 and τ2 = 0 provided following conditions hold

A11 > 0, A13 > 0, A14 > 0 and A11A12A13 > A2
13 + A2

11A14.

4.1. Existence of Hopf bifurcation

In this part, the occurrence of Hopf bifurcation (periodic solutions) is established when an endemic
equilibrium loses its stability. For this, the delay parameter τ1 is considered as a bifurcation parameter.
There exists a Hopf bifurcation at a threshold value of the delay τ10 if

(H1) λ1,2(τ10) = ±iω10(ω10 > 0) and all other eigenvalues are with negative real parts at τ = τ10.

(H2)
[
Re

(
dλ1,2

dτ1

)−1
]∣∣∣∣∣
λ=iω10

, 0.

For the (H1) condition, we require that there exists at least one positive root of the Eq (4.5).
Descartes’ rule of signs [59] will determine the conditions for at least one positive root of the Eq (4.5)
in following result.

Lemma 1. The Eq (4.5) has

(i) at least one positive root (either one or three) if

(a) A11 > 0, A12 < 0, A13 > 0, A14 < 0,
(b) A11 < 0, A12 < 0, A13 > 0, A14 < 0,
(c) A11 < 0, A12 > 0, A13 > 0, A14 < 0,
(d) A11 < 0, A12 > 0, A13 < 0, A14 < 0.

(ii) exactly one positive root if

(a) A11 < 0, A12 < 0, A13 < 0, A14 < 0,
(b) A11 > 0, A12 < 0, A13 < 0, A14 < 0,
(c) A11 > 0, A12 > 0, A13 < 0, A14 < 0,
(d) A11 > 0, A12 > 0, A13 > 0, A14 < 0.

(iii) at most two positive roots if

(a) A11 > 0, A12 < 0, A13 > 0, A14 > 0,
(b) A11 > 0, A12 > 0, A13 < 0, A14 > 0,
(c) A11 < 0, A12 > 0, A13 > 0, A14 > 0.

Assume that the Eq (4.5) holds one of the conditions of Lemma 1, then, the Eq (4.5) has at least one
positive root say m10 = ω1

2
0. Then, for a threshold value of the delay τ1, there will be a pair of purely

imaginary roots (±iω10) for the Eq (4.1). We obtain the following threshold value for the delay τ1 with
the help of Eqs (4.2) and (4.3) as:

τ10 =
1
ω10

[arccos(Υ(ω10))], (4.6)

where

Υ(ω10) =
(B2ω1

2
0 − B4)(ω1

4
0 − A2ω1

2
0 + A4 + C2) + (B1ω1

3
0 − B3ω10)((A3 + C1)ω10 − A1ω1

3
0)

(B2ω1
2
0 − B4)2 + (B1ω1

3
0 − B3ω10)2

. (4.7)
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Further, we differentiate the Eq (4.1) with respect to τ1 to get the transversality condition (H2) as:Re
(

dλ
dτ1

)−1
∣∣∣∣∣∣∣
λ=iω10

=
ψ
′

(m)
(B2ω1

2
0 − B4)2 + (B1ω1

3
0 − B3ω10)2

. (4.8)

Lemma 2. Let iω10 be a purely imaginary root with m10 = ω1
2
0 such that ψ(ω10) = 0 and ψ

′

(ω10) , 0,

then
[
Re

(
dλ
dτ1

)−1
]∣∣∣∣∣
λ=iω10

, 0 and its sign is the same as ψ
′

(ω10) , 0.

Above results ensure that the transversality condition holds true. The following result summarises
the above discussion.

Theorem 4. The unique endemic equilibrium E2 is locally asymptotically stable for τ1 < τ10 and is
unstable for τ1 > τ10. At τ1 = τ10, a Hopf bifurcation occurs, i.e., a family of periodic solutions
bifurcates from the endemic equilibrium E2 as delay parameter τ1 crosses the threshold value τ10 [60,
61].

Numerical validation

For numerical validation of the Hopf bifurcation result, a set of parameters are chosen as in Example
1 except β = 0.0125, µ = 0.02 and δ0 = 0.05 so that the basic reproduction number is R0 = 5.04 > 1.
In this case, the model has the unique endemic equilibrium E2 = (49.59, 1.47, 162.04, 1.47) along with
the unstable disease free equilibrium E1 = (250, 0, 0, 0). Further, we notice that the coefficients of the
Eq (4.5) are A11 > 0, A12 < 0, A13 > 0 and A14 > 0, and hence, the condition iii(a) of Lemma 1 holds.
This gives that the Eqs (4.5) and (3.5) have a positive root (0.04509) and a pair of purely imaginary root
(±0.212i with ω10 = 0.212) respectively. Further, by using Eq (4.6), the threshold value of the delay

τ1 is calculated as τ10 = 7.97 along with transversality condition
[
Re

(
dλ
dτ1

)−1
]∣∣∣∣∣
λ=iω10

= 2.2 × 102 > 0.

Thus, Theorem 4 ensures that the delay system (2.1) will be stable for the delay range τ1 ∈ [0, τ10) and
unstable for τ1 > τ10. Whereas periodic oscillations bifurcate at τ1 = τ10 = 7.97 around E2 when τ1

crosses τ10.
Further, we numerically exhibit the stability and instability of the unique endemic equilibrium E2

by solving the delay system (2.1) with the help of DDE23 in MATLAB. The delay model is solved for
the delay τ1 = 7 < τ10 with initial population size S (θ) = 70, I(θ) = 5,R(θ) = 10 and Z(θ) = 5 for
θ ∈ [−τ1, 0] and model parameters taken as above. Figure 4 describes the corresponding result which
infers that the unique endemic equilibrium E2 is asymptotically stable.

Furthermore, Theorem 4 infers that the unique endemic equilibrium E2 loses its stability leading to
the existence of a family of periodic solutions when delay τ1 crosses the threshold value τ10 = 7.97.
To show this numerically, the delay system (2.1) is further solved for the delay parameter τ = 9 > τ10.
The corresponding periodic solutions are plotted in Figure 5 which mimics the obtained analytical
result. Therefore, our study infers that the disease will survive in oscillatory nature due to the delay
effect considered in the waning of the immunity. Moreover, if this delay takes more than eight days,
then it will be very challenging to estimate the actual size of the epidemic due to oscillations which
leads the difficulty in control implementation. In addition, in this case, disease elimination may be very
critical and challenging due to oscillations and hence, the actual estimation of an epidemic cannot be
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Figure 4. (a) Solution trajectory of the susceptible population showing stability for τ1 =

7 < τ10 = 7.97. (b) Solution trajectory of the infective population showing stability for
τ1 = 7 < τ10 = 7.97.

measured. A similar kind of observation is found in the study of Barbarossa and others [48] though in
this case, authors have taken waning immunity in a different context other than in our case. In addition,
recently in 2022, Zhang and others also established the existence of such oscillations (Hopf bifurcation)
when the delay in waning crosses a threshold value when the susceptible population is divided based
on the constant effect of awareness. A similar kind of observation has also been encountered by Yadav
and Srivastava when a constant effect of information with delay is quantified [54]. Whereas, in this
proposed study, a dynamic effect of information is considered along with a delay in waning immunity.
Thus, this proposed study gives more generalised biological and mathematical insights. Our obtained
Hopf bifurcation result and study also have good agreement in results claimed by Lv et al. [43]. In
2023, Lv et al. investigated the delay effects related to the failure of antibody and COVID-19 booster
vaccination dose, and they found the existence of periodic oscillations for a real data set.
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Figure 5. (a) Oscillation in susceptible population for τ1 = 9 > τ10 = 7.97, (b) Oscillation
in infective population for τ1 = 9 > τ10 = 7.97.

In addition, the bifurcation diagrams are plotted to show the periodic orbits when the unique en-
demic equilibrium loses its stability at the threshold value of τ1. The delay parameter is varied in
τ1 ∈ [7, 11] to plot the diagrams and are shown in Figures 6–8. One can easily see from Figures 6 and
7 that when the delay parameter τ1 lies in the range [7, 7.97), the unique endemic equilibrium E2 is
stable and as τ1 crosses the threshold value τ10 = 7.97 bifurcation takes place. In addition, we also plot
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the occurrence of periodic orbits as the delay parameter τ1 varies, and the corresponding bifurcation
diagram is shown in Figure 8.

Figure 6. Plot of the bifurcation diagrams when τ1 crosses τ10 = 7.97, (a) for the susceptible
population, (b) for the infective population.

Figure 7. Plot of the bifurcation diagrams when τ1 crosses τ10 = 7.97, (a) for the recovered
population, (b) for the information.
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Figure 8. Plot of the bifurcation diagram showing the occurrence of periodic orbits when τ1

crosses τ10 = 7.97 in S-I-τ1 and Z-I-τ1 spaces.
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Figure 9. Plot of the bifurcation diagram showing the occurrence of periodic orbits when τ1

crosses τ10 = 7.97 in Z-R-τ1 and I-R-τ1 spaces.

4.1.1. Global stability of unique endemic equilibrium E2

This particular part explores the global properties of endemic equilibrium E2 by proposing a suitable
Lyapunov function.

Theorem 5. If R0 > 1, τ1 > 0 and τ2 = 0, the unique endemic equilibrium E2 of the model system (2.1)
is globally asymptotically stable under following parametric conditions a2 < 2a0(µ + δ), δ2

0 <
4γµ2

3(2µ+δ) ,

(du1)2 < 2a0γµ
3

3Λ2(2µ+δ) and ((2µ + δ)du1Z∗ − 2µγ)2 < 4
3γµ

2(2µ + δ).

Proof. In order to establish the global stability, we construct the following positive definite function in∑
,

U1(S , I,R,Z) =
1
2
[
(S − S ∗) + (I − I∗) + (R − R∗)

]2
+

K1

2
(R − R∗)2 + K2

(
I − I∗ − I∗ ln

I
I∗

)
+

1
2

(Z − Z∗)2 + µ

∫ t

t−τ1

(R(ν) − R∗)2dν,

The positive constants K1 and K2 will be selected suitably later. Now, we shall differentiate the function
U1 with respect to t along the solution trajectories of the model (2.1) and using parametric relationship
of equilibrium points. We have,

U̇1 = [(S − S ∗) + (I − I∗) + (R − R∗)]
d(S + I + R)

dt
+ K1(R − R∗)

dR
dt

+ K2
(I − I∗)

I
dI
dt

+(Z − Z∗)
dZ
dt

+ µ((R − R∗)2 − (R(t − τ1) − R∗)2)

= [(S − S ∗) + (I − I∗) + (R − R∗)][Λ − µ(S + I + R) − δI] + K1(R − R∗)[γI − µR

+du1ZS − δ0R(t − τ1)] + K2
(I − I∗)

I
(βS I − (µ + δ + γ)I) + (Z − Z∗)(aI − a0Z)

+µ((R − R∗)2 − (R(t − τ1) − R∗)2)
= [(S − S ∗) + (I − I∗) + (R − R∗)][−µ(S − S ∗) − (µ + δ)(I − I∗) − µ(R − R∗)] + K1

(R − R∗)[γ(I − I∗) − µ(R − R∗) − δ0(R(t − τ1) − R∗) + du1(ZS − Z∗S ∗)] + K2(I − I∗)
(βS − βS ∗) + (Z − Z∗)(a(I − I∗) − a0(Z − Z∗)) + µ((R − R∗)2 − (R(t − τ1) − R∗)2)
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11015

= −µ(S − S ∗)2 − (µ + δ)(I − I∗)2 − µ(R − R∗)2 − (2µ + δ)(S − S ∗)(I − I∗) − 2µ(S − S ∗)
(R − R∗) − (2µ + δ)(R − R∗)(I − I∗) + K1γ(R − R∗)(I − I∗) − K1µ(R − R∗)2 − K1δ0

(R − R∗)(R(t − τ1) − R∗) + K1du1Z∗(S − S ∗)(R − R∗) + K1du1S (Z − Z∗)(R − R∗)
+K2β(S − S ∗)(I − I∗) + a(I − I∗)(Z − Z∗) − a0(Z − Z∗)2 + µ(R − R∗)2

−µ(R(t − τ1) − R∗)2.

Further, selecting and replacing the values of positive constants as: K1 =
2µ + δ

γ
and K2 =

2µ + δ

β
, we

have

U̇1 = −µ(S − S ∗)2 − (µ + δ)(I − I∗)2 −
2µ + δ

γ
µ(R − R∗)2 −

2µ + δ

γ
δ0(R − R∗)(R(t − τ1) − R∗)

+

(
2µ + δ

γ
du1Z∗ − 2µ

)
(S − S ∗)(R − R∗) +

2µ + δ

γ
du1S (Z − Z∗)(R − R∗)

+a(I − I∗)(Z − Z∗) − a0(Z − Z∗)2 − µ(R(t − τ1) − R∗)2

= −F1((S − S ∗)(R − R∗)) − F2((R − R∗)(R(t − τ1) − R∗)) − F3((Z − Z∗)(R − R∗))
−F4((I − I∗)(Z − Z∗)),

where F1((S − S ∗)(R − R∗)) =
[
µ(S − S ∗)2 −

(
2µ+δ

γ
du1Z∗ − 2µ

)
(S − S ∗)(R − R∗) +

2µ+δ

3γ µ(R − R∗)2
]
,

F2((R − R∗)(R(t − τ1) − R∗)) =
[

2µ+δ

3γ µ(R − R∗)2 +
2µ+δ

γ
δ0(R − R∗)(R(t − τ1) − R∗) + µ(R(t − τ1) − R∗)2

]
,

F3((Z − Z∗)(R − R∗)) =
[

a0
2 (Z − Z∗)2 −

2µ+δ

γ
du1S (Z − Z∗)(R − R∗) +

2µ+δ

3γ µ(R − R∗)2
]

and F4((I − I∗)(Z −

Z∗)) =
[
(µ + δ)(I − I∗)2 − a(I − I∗)(Z − Z∗) + a0

2 (Z − Z∗)2
]
. Note that within the feasible region

∑
,

U̇1 ≤ 0 if following parametric conditions a2 < 2a0(µ + δ), δ2
0 < 4γµ2

3(2µ+δ) , (du1)2 < 2a0γµ
3

3Λ2(2µ+δ) and
((2µ + δ)du1Z∗ − 2µγ)2 < 4

3γµ
2(2µ + δ) hold true. It is observed that U̇1 = 0 if and only if at en-

demic equilibrium E2 and U̇1 < 0 otherwise within the feasible region
∑

, therefore the singleton set
{E2} is the largest positively invariant set contained in {(S , I,R,Z) ∈

∑
: U̇1 = 0}. Hence, in the

interior of
∑

, Lyapunov LaSalle’s theorem [62] ensures that the endemic equilibrium E2 is globally
asymptotically stable.

Example 2. In this part, we shall numerically support the aforesaid global stability property of
the unique endemic equilibrium with the help of model parameters which are selected as: Λ =

5, β = 0.0125, µ = 0.02, d = 0.0017, δ = 0.5, δ0 = 0.005, a = 0.01, a0 = 0.1, γ = 0.1, u1 =

0.009. For this set of model parameters, the delay model has the unique endemic equilibrium
E2 = (49.6, 6.67, 26.73, 0.66) along with the unstable disease free equilibrium E1 = (250, 0, 0, 0)
and in this case, R0 = 5.0403 > 1. Clearly, the parametric conditions for global stability
a2 − 2a0(µ + δ) = −0.1039 < 0, δ2

0 −
4γµ2

3(2µ+δ) = −7.3765 × 10−5 < 0, (du1)2 −
2a0γµ

3

3Λ2(2µ+δ) = −3.7165 × 10−9

and ((2µ + δ)du1Z∗ − 2µγ)2 − 4
3γµ

2(2µ + δ) = −1.2844 × 10−5 < 0 hold true. This confirms the global
stability of the endemic equilibrium E2 for all time lags τ1, τ2 > 0 (Theorem 5).

From biological point of view, our global stability result infers that irrespective of time lag in im-
munity loss (even if for larger delay), the disease will persist in stable sense and it can be eradicated
by bringing the basic reproduction number below one. Thus, oscillations may appear locally and will
disappear in larger context and this is one of the important biological as well as mathematical insight.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11000–11032.



11016

5. Case-II: τ1 = 0 and τ2 > 0

The characteristic equation corresponding to this case is defined as follows:

D(λ, τ2) = λ4 + (A1 + B1)λ3 + (A2 + B2)λ2 + (A3 + B3)λ + (A4 + B4) + e−λτ2(C1λ + C2) = 0. (5.1)

Consider P1 = A1 + B1,Q1 = A2 + B2,W1 = A3 + B3 and D1 = A4 + B4. Using the similar argument
as in Case-I, in the Eq (5.1), we further replace λ = iω and the corresponding real and imaginary parts
are given by.

ω4 − Q1ω
2 + D1 = −C1ω sinωτ2 −C2 cosωτ2. (5.2)

W1ω − P1ω
3 = C2 sinωτ2 −C1ω cosωτ2. (5.3)

Now, we square and add both the above Eqs (5.2) and (5.3), we have

ω8 + B11ω
6 + B12ω

4 + B13ω
2 + B14 = 0. (5.4)

Here, B11 = P2
1 − 2Q1, B12 = Q2

1 + 2D1 − 2P1W1, B13 = W2
1 − 2D1Q1 −C2

1 and B14 = D2
1 −C2

2. Further,
we substitute m = ω2 in Eq (5.4), we get

Ψ(m) = m4 + B11m3 + B12m2 + B13m + B14 = 0. (5.5)

Clearly, the Eq (5.5) will have all roots with negative real part if the Routh-Hurwitz criterion holds true
for (5.5) which gives the following result.

Theorem 6. The unique endemic equilibrium E2 of the delay system (2.1) will be locally asymptotically
stable for all τ2 > 0 provided following conditions hold

B11 > 0, B13 > 0, B14 > 0 and B11B12B13 > B2
13 + B2

11B14.

5.1. Existence of Hopf bifurcation

Following similarly as in Case-I, the delay parameter τ2 is taken as a bifurcation parameter and at
the threshold value of delay τ = τ20, the assumptions (H1) and (H2) must hold for Hopf bifurcation.

At least one positive root of the Eq (5.5) is needed to get assumption (H1) which can be obtained
using Descartes’ rule of signs and following the same result as discussed in Lemma 1 for Bi j for
i, j = 1 − 4 in place of Ai j for i, j = 1 − 4. Assume that the Eq (5.5) satisfies one of the conditions
given in Lemma 1 to have at least one positive root say m20 = ω2

2
0. Hence, the Eq (5.1) will have a

pair of purely imaginary root (±iω20) at the threshold of the delay τ20. And the corresponding τ20 is
calculated using Eqs (5.2) and (5.3) and is given by.

τ20 =
1
ω20

[arccos(Φ(ω20))], (5.6)

where,

Φ(ω20) =
ω2

4
0(P1C1 −C2) + ω2

2
0(C2Q1 −C1W1) −C2D1

C2
2 + C2

1ω2
2
0

. (5.7)

Further, the Eq (5.1) is differentiated with respect to τ2 to get the transversality condition (H2) as.Re
(

dλ
dτ2

)−1
∣∣∣∣∣∣∣
λ=iω20

=
Ψ
′

(m)
C2

2ω2
2
0 + C2

1

. (5.8)
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Lemma 3. Let iω20 be a purely imaginary root with m20 = ω2
2
0 such that ψ(ω20) = 0 and Ψ

′

(ω20) , 0,

then
[
Re

(
dλ
dτ2

)−1
]∣∣∣∣∣
λ=iω20

, 0 and its sign is the same as Ψ
′

(ω20) , 0.

Above discussion ensures that the transversality condition holds true which leads the following
result.

Theorem 7. The unique endemic equilibrium E2 is locally asymptotically stable for τ2 < τ20 and is
unstable for τ2 > τ20. At τ2 = τ20, a Hopf bifurcation occurs, i.e., a family of periodic solutions
bifurcates from the endemic equilibrium E2 as delay parameter τ2 crosses the threshold value τ20 [60,
61].

Numerical validation

For the numerical experimentation of the Hopf bifurcation, a set of parameters as given in Example
1 are considered expect β = 0.03 so that the basic reproduction number becomes R0 = 5.859 > 1.
For this set of parameters, the model has a unique endemic equilibrium E2 = (21.33, 1.49, 83.54, 1.49)
along with the unstable disease free equilibrium E1 = (125, 0, 0, 0). For the numerical simulation,
we consider the initial population size S (θ) = 30, I(θ) = 5,R(θ) = 85 and Z(θ) = 1 for θ ∈ [−τ2, 0].
Notice that the coefficients B11, B12 of the Eq (5.5) are positive and B13, B14 are negative, and hence, the
condition Lemma 1ii(c) holds true. Therefore, the Eqs (5.5) and (5.1) have exactly one positive root
(0.04005) and a pair of purely imaginary root (±0.20012i with ω20 = 0.20012) respectively. Also, in

this case, τ20 = 1.537 and
[
Re

(
dλ
dτ2

)−1
]∣∣∣∣∣
λ=iω20

= 2.11 > 0. Thus, Theorem 7 infers that the delay system

(2.1) will remain stable for the delay range τ2 ∈ [0, τ20) and unstable for τ2 > τ20. Whereas, when τ2

crosses τ20, the E2 loses stability and leads the occurrence of periodic oscillations at τ2 = τ20 = 1.537.
Further, the delay model is examined numerically for delay parameter τ2 = 1 < τ20 to check the

stability of the unique endemic equilibrium E2 and the results are plotted in Figure 10 which infers
that E2 is locally stable. In this case, the disease can be eradicated if the time lag in propagation of
information (τ2) is less than couple of days after outbreak of the disease by bringing down the basic
reproduction number R0 less than one (Theorem 2). From Theorem 7, as τ2 crosses τ20 = 1.537, the
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Figure 10. (a) Solution trajectory of susceptible population showing stability for τ2 = 1. (b)
Solution trajectory of infective population showing stability for τ2 = 1.

periodic solutions will appear around E2. To show this, the delay model (2.1) is further solved for τ2 =
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3 and the oscillatory trajectories are plotted in Figure 11. Clearly, due to the delay effect considered in
information growth, the disease will survive oscillatory in behaviour within the population and hence
the implementation of suitable control is complicated.

It is important to notice here that, if the propagation of information takes more than couple of days
after the outbreaks to make aware the population, then the population will experience the oscillatory
behaviour of the disease. Therefore, in this case, it will be very difficult to account the actual size
of the epidemic and hence, the control will be very challenging due to high and low peaks of the
disease. Therefore, in order to control the spread of the disease, health agencies and governments have
to propagate the information very quickly after the disease outbreak.
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Figure 11. (a) Oscillation in susceptible population for τ2 = 3. (b) Oscillation in infective
population for τ2 = 3.

Now to further get insight into the model numerically, we wish to plot the bifurcation diagram
to depict the oscillations and instability around E2. For this purpose, we vary τ2 ∈ [0.5, 3] and the
corresponding bifurcation diagrams are shown in Figure 15. It is very clear from Figure 15 that the
unique endemic equilibrium E2 is stable for the range τ2 ∈ [0.5, 1.537) whereas it loses its stability at
τ20 = 1.537 leads the occurrence of oscillations in the population for τ2 > 1.537. Some authors such as
Misra et al. and Greenhalgh et al. [19,21] have investigated similar kind of results for Hopf bifurcation
using different modeling techniques.
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Figure 12. Plot of the bifurcation diagrams when τ2 crosses τ20 = 1.537 (a) for the suscepti-
ble population, (b) for the infective population.
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Figure 13. Plot of the bifurcation diagrams when τ2 crosses τ20 = 1.537 (a) for the recovered
population, (b) for the density of information.
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Figure 14. Plot of the bifurcation diagram showing the occurrence of periodic orbits when
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Figure 15. Plot of the bifurcation diagram showing the occurrence of periodic orbits when
τ2 crosses τ20 = 1.537 in Z-R-τ2 and I-R-τ2 spaces.

5.2. Existence of Hopf-Hopf bifurcation

This particular section focuses to study a different kind of bifurcation named as a Hopf-Hopf bifur-
cation which appears at two different values of the delay. It can be easily seen that the Eq (5.5) may
have more than one positive root depending on the signs of the coefficients B11, B12, B13 and B14. Let
us consider that the Eqs (5.5) and (3.5) have two positive roots (m21 = ω2

2
1 and m22 = ω2

2
2 and two pair
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of purely imaginary roots (±iω21 and ±iω22) respectively. Also, the critical values of the delay τ2 are
obtained as.

τ2 j =
1
ω2 j

[arccos(Φ(ω2 j))], j = 1, 2. (5.9)

where Φ(ω2 j) =
ω2

4
j (P1C1−C2)+ω2

2
j (C2Q1−C1W1)−C2D1

C2
2+C2

1ω2
2
j

, j = 1, 2. The corresponding transversality conditions

are given by, Re
(

dλ
dτ2

)−1
∣∣∣∣∣∣∣
λ=iω2 j

=
Ψ
′

(m)
C2

2ω2
2
j + C2

1

, j = 1, 2. (5.10)

We state the following result using the results given in [33, 63, 64].

Lemma 4. Let iω2 j be the purely imaginary roots with m2 j = ω2
2
j such that ψ(ω2 j) = 0 and Ψ

′

(ω2 j) , 0,

j=1, 2, then
[
Re

(
dλ
dτ2

)−1
]∣∣∣∣∣
λ=iω21

> 0 if Ψ
′

(ω21) > 0 and
[
Re

(
dλ
dτ2

)−1
]∣∣∣∣∣
λ=iω22

< 0 if Ψ
′

(ω22) < 0.

Using the Lemma 4, the existence of Hopf-Hopf (double) bifurcation is ensured in the following.

Theorem 8. The delay model undergoes Hopf-Hopf (double) bifurcation at τ21 and τ22 respectively.
The unique endemic equilibrium E2 is locally asymptotically stable for τ2 < τ21. At τ2 = τ21 the
system undergoes Hopf bifurcation and the endemic equilibrium E2 loses its stability. Further as delay
parameter τ2 increases, the endemic equilibrium E2 regains its stability at τ2 = τ22 and again system
undergoes Hopf bifurcation. The endemic equilibrium E2 remains stable for τ2 > τ22.

Numerical validation

The Hopf-Hopf (double) bifurcation result is validated numerically in this part, for this, a set of
parameters as given in Example 1 except β = 0.03 and δ0 = 0.5. In this case, we note R0 = 5.859 > 1
and the unique endemic equilibrium E2 = (21.33, 5.25, 32.73, 5.25) is obtained for the delay model
along with unstable disease free equilibrium E1 = (125, 0, 0, 0). Notice that the Eq (5.5) consists two
positive roots m21 = 0.0452,m22 = 0.0097 as B11 and B14 are positive, and B12 and B13 are negative.
Hence, two pair of purely imaginary roots ±0.212i and ±0.0985i with ω21 = 0.212, ω22 = 0.0985 are
found for the characteristic Eq (5.1). The corresponding critical values of the delay parameter τ2 are
calculated by using (5.9) and given as: τ21 = 6.18 and τ22 = 29.79. Also The transversality conditions

are determined as:
[
Re

(
dλ
dτ2

)−1
]∣∣∣∣∣
λ=iω21

= 1.75 > 0 and
[
Re

(
dλ
dτ2

)−1
]∣∣∣∣∣
λ=iω22

= −0.792 < 0. Hence Theorem

8 follows.
To show the stability and bifurcation, we simulate the delay system for the initial population size:

S (θ) = 30, I(θ) = 7,R(θ) = 30 and Z(θ) = 4 for θ ∈ [−τ2, 0] along with above parameters. Figures 16
and 17 describe the corresponding Hopf-Hopf bifurcation result numerically. Notice from Figures 16
and 17 that the unique endemic equilibrium E2 is locally stable for τ2 ∈ [0, τ21 = 6.18) and at τ2 =

τ21 = 6.18 periodic oscillations appear through first Hopf bifurcation as E2 loses its stability. Further,
as the bifurcation parameter increases, at τ2 = τ22 = 29.79, periodic oscillations die out through second
Hopf bifurcation and for τ2 > τ22 = 29.79, the endemic equilibrium E2 regains its stability and remains
stable. Thus, the delay in information propagation leads to the complex behaviour of the diseases.

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11000–11032.



11021

Moreover, our finding suggests that Hopf-Hopf bifurcation gives a region for a delay that not only
exhibits stability but also oscillations with different periods in population as shown in Figure 16. It
is very clear from Figure 18 that E2 is stable for τ2 = 6 < τ21 = 6.18 and τ2 = 31 > τ22 = 29.79
and also oscillations appear around E2 for τ21 < τ2 = 20 < τ22. Therefore, multiple stability switches
are observed due to the delay effect taken into account in the model system. We further infer that the
system undergoes the existence of periodic orbits for τ2 ∈ [6.18, 29.79] as given in Figure 17 and hence
infection will persist oscillatory within the population. In this case, it is clear from Figure 19 that the
solution trajectories approach to periodic orbit for a fix τ2 = 15.

Thus, it is important to notice here that the control of disease spread will be very challenging when
the delay in the dissemination of information lies τ2 ∈ [6.18, 29.79] due to oscillations (high and low
peaks of an epidemic). Hence, if information propagates in the early phase of the epidemic, a reduction
in disease transmission can be obtained. Therefore, biologically this Hopf-Hopf bifurcation result is
very important which provides a range of specific delays where the infection will persist oscillatory
and as discussed above this is a crucial range for delay parameter. In order to control the oscillations
within the population, a reduction in delay value (propagation of information) is needed that is early
dissemination of information is required. This kind of similar stability switches results were discussed
in Barbarossa and others [48] but in a different context whereas a similar kind of observation is found
in Kumar et al. [47]. In Liu et al. [35], authors obtained a closed loop shaped curve during Hopf-Hopf
bifurcation which they named as ‘endemic bubble’. In this section, we have also obtained a similar
‘endemic bubble’ by varying the bifurcation parameter. All the above studies include only a single
delay effect in different contexts whereas, in this proposed model, we have considered two delays
which gives the more generalised version of existing studies as two delays lead the high mathematical
complexity.
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Figure 16. Plot of the Hopf-Hopf bifurcation diagram for susceptible and infective popula-
tion respectively.

5.2.1. Global stability of unique endemic equilibrium E2

Here, by formulating a suitable Lyapunov function, we shall explore the global properties of unique
endemic equilibrium E2.

Theorem 9. If R0 > 1, τ1 = 0 and τ2 > 0, the unique endemic equilibrium E2 of the model system
(2.1) is globally asymptotically stable under following parametric conditions a < min{δ, 2a0}, (du1)2 <
a0γµ

2(µ+δ)
δΛ2 and (δdu1Z∗ − 2µγ)2 < 2γµδ(µ + δ0).

Mathematical Biosciences and Engineering Volume 20, Issue 6, 11000–11032.



11022

0
10

20
30

40

10

20

30

40
0

5

10

15

τ
2

S

I

0
10

20
30

40

0
2

4
6

8
10

0

20

40

60

τ
2

Z

R

Figure 17. Plot of the Hopf-Hopf bifurcation diagram in S-I and R-Z planes.
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Figure 18. Profiles of infective population showing (a) stability of E2 for τ2 = 6 < τ20 =

6.18. (b) occurrence of oscillation around E2 for τ2 = 20. (c) stability of E2 for τ2 = 31 >

τ20 = 29.79.
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Figure 19. Trajectories approaching to periodic orbit for τ2 = 15.

Proof. For this purpose, we consider the positive definite function in
∑

which is given by,

U2(S , I,R,Z) =
1
2
[
(S − S ∗) + (I − I∗) + (R − R∗)

]2
+

K1

2
(R − R∗)2 + K2

(
I − I∗ − I∗ ln

I
I∗

)
+

1
2

(Z − Z∗)2 + a
∫ t

t−τ2

(I(ν) − I∗)2dν,

The positive constants K1 and K2 will be selected suitably later. Now, we shall differentiate the func-
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tion U1 with respect to t along the solution trajectories of the model (2.1) and using the parametric
relationship of equilibrium points. We have,

U̇2 = [(S − S ∗) + (I − I∗) + (R − R∗)]
d(S + I + R)

dt
+ K1(R − R∗)

dR
dt

+ K2
(I − I∗)

I
dI
dt

+(Z − Z∗)
dZ
dt

+ a((I − I∗)2 − (I(t − τ2) − I∗)2)

= [(S − S ∗) + (I − I∗) + (R − R∗)][Λ − µ(S + I + R) − δI] + K1(R − R∗)[γI − (µ + δ0)R

+du1ZS ] + K2
(I − I∗)

I
(βS I − (µ + δ + γ)I) + (Z − Z∗)(aI(t − τ2) − a0Z)

+a((I − I∗)2 − (I(t − τ2) − I∗)2)
= [(S − S ∗) + (I − I∗) + (R − R∗)][−µ(S − S ∗) − (µ + δ)(I − I∗) − µ(R − R∗)] + K1

(R − R∗)[γ(I − I∗) − (µ + δ0)(R − R∗) + du1(ZS − Z∗S ∗)] + K2(I − I∗)(βS − βS ∗)
+(Z − Z∗)(a(I(t − τ2) − I∗) − a0(Z − Z∗)) + a((I − I∗)2 − (I(t − τ2) − I∗)2)

= −µ(S − S ∗)2 − δ(I − I∗)2 − µ[(I − I∗) + (R − R∗)]2 − (2µ + δ)(S − S ∗)(I − I∗) − 2µ
(S − S ∗)(R − R∗) − δ(R − R∗)(I − I∗) + K1γ(R − R∗)(I − I∗) − K1(µ + δ0)(R − R∗)2

+K1du1Z∗(S − S ∗)(R − R∗) + K1du1S (Z − Z∗)(R − R∗) + K2β(S − S ∗)(I − I∗)
+a(I(t − τ2) − I∗)(Z − Z∗) − a0(Z − Z∗)2 + a((I − I∗)2 − (I(t − τ2) − I∗)2).

Now, choosing and replacing the values of positive constants as: K1 =
δ

γ
and K2 =

2µ + δ

β
, we get

U̇2 = −µ(S − S ∗)2 − µ[(I − I∗)2 + (R − R∗)2] − (δ − a)(I − I∗)2 −
δ

γ
(µ + δ0)(R − R∗)2

+

(
δ

γ
du1Z∗ − 2µ

)
(S − S ∗)(R − R∗) +

δ

γ
du1S (Z − Z∗)(R − R∗) − a0(Z − Z∗)2

+a(I(t − τ2) − I∗)(Z − Z∗) − a(I(t − τ2) − I∗)2

= −G1((S − S ∗)(R − R∗)) −G2((Z − Z∗)(R − R∗)) −G3((I(t − τ2) − I∗)(Z − Z∗))
−(δ − a)(I − I∗)2,

where G1((S − S ∗)(R−R∗)) =
[
µ(S − S ∗)2 −

(
δdu1Z∗
γ
− 2µ

)
(S − S ∗)(R − R∗) +

δ(µ+δ0)
2γ (R − R∗)2

]
, G2((Z −

Z∗)(R−R∗)) =
[

a0
2 (Z − Z∗)2 −

δdu1S
γ

(Z − Z∗)(R − R∗) +
δ(µ+δ0)

2γ (R − R∗)2
]

and G3((I(t−τ2)− I∗)(Z−Z∗)) =[
a(I(t − τ2) − I∗)2 − a(I(t − τ2) − I∗)(Z − Z∗) + a0

2 (Z − Z∗)2
]
. Clearly, within the feasible region

∑
, if

following parametric conditions a < min{δ, 2a0}, (du1)2 < a0γµ
2(µ+δ)
δΛ2 and (δdu1Z∗ − 2µγ)2 < 2γµδ(µ +

δ0) hold true, then U̇2 ≤ 0 . We found that U̇2 = 0 if and only if at endemic equilibrium E2 and
U̇2 < 0 otherwise within the feasible region

∑
, therefore the singleton set {E2} is the largest positively

invariant set contained in {(S , I,R,Z) ∈
∑

: U̇2 = 0}. Hence, in the interior of
∑

, Lyapunov LaSalle’s
theorem [62] ensures that the endemic equilibrium E2 is globally asymptotically stable.

Example 3. In this example, the aforesaid global stability result of the unique endemic equilibrium
is validated numerically for a set of the same parameters as considered in the Example 2. Similarly,
the delay model have the unique endemic equilibrium E2 = (49.6, 6.67, 26.73, 0.66) and a disease free
equilibrium E1 = (250, 0, 0, 0) (unstable) along with the basic reproduction number R0 = 5.0403 > 1.
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The parametric conditions for global stability are defined as: a − min{δ, 2a0} = −0.19 < 0, (du1)2 −
a0γµ

2(µ+δ)
δΛ2 = −3.1977× 10−7 < 0 and (δdu1Z∗ − 2µγ)2 − 2γµδ(µ+ δ0) = −3.4041× 10−5 < 0. Notice that

all the conditions are satisfied for this set of parameters which insures that the endemic equilibrium E2

is globally stable for all time lags τ1, τ2 > 0 (Theorem 9).

6. Case-III: τ1 > 0 and τ2 > 0

Here, we study the stability of endemic equilibrium E2 in the presence of both delays τ1 and τ2.
In the following, we first state the result that infers about the sign of the real part of roots of the
characteristic Eq (3.5).

Lemma 5. [65] If all roots of Eq (5.1) have negative real parts for τ2 > 0, then there exists a
τ10(τ2) > 0 such that all roots of Eq (3.5) have negative real parts when τ1 < τ10(τ2).

Proof. Proof follows similarly as of Lemma 6 of [65].

Theorem 10. Let R0 > 1 and τ20 = 1
ω20

[arccos(Φ(ω20))], where Φ(ω20) is given in Eq (5.7). Then
for any τ2 < τ20 there exists a τ10(τ2) > 0 such that the unique endemic equilibrium E2 is locally
asymptotically stable for τ1 < τ10(τ2) and τ2 < τ20.

Proof. It follows from Theorem 7 that the Eq (5.1) has all negative real parts for τ2 < τ20. Now using
Lemma 5, the result follows.

Similarly, we state the following result for the delay τ1.

Theorem 11. Let R0 > 1 and τ10 = 1
ω10

[arccos(Υ(ω10))], where Υ(ω10) is given in Eq (4.7). Then
for any τ1 < τ10 there exists a τ20(τ1) > 0 such that the unique endemic equilibrium E2 is locally
asymptotically stable for τ2 < τ20(τ1).

Remark 2. From Theorem 10, for the stability, an explicit form for threshold value of the τ10 can not
obtain rather it only informs the existence of such value. Using numerical experimentation, we shall
find the region of stability in the presence of both delays.

In order to find the stability region when both delays are present, we simulate the delay model
system for parametric values as considered in the pervious section (Hopf-Hopf bifurcation).

Further, we shall vary both delays as 0.25 ≤ τ1 ≤ 15 and 0.25 ≤ τ2 ≤ 50 to obtain the stability
region numerically and the corresponding result is shown in Figure 20. The stable endemic equilibrium
is plotted in ‘∗’ in τ2τ1-plane and � is showing otherwise.

This result is more precise for the above-considered set of parameters than the one established in
Theorem 10. In addition, we would like to discuss here that, in general delay destabilises the system
but from Theorems 10 and 11, it is clear that the system is still stable when both delays are present
under some restrictions. Also, from the stability region (Figure 20), if we consider τ1 = 2 (small)
and τ2 = 32 (large), one can find the system is stable whereas if we change it, the stability may
change. Thus, stability or stability switches are important insights from the biological point of view
as eradication of disease may be possible in the case of stability whereas, in the case of oscillations, it
will be challenging.
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Figure 20. Plot of stability region for the delay system when both the delays are present.
‘asterisk’ shows the stable endemic equilibrium for the values of τ1 and τ2, and ‘diamond’
otherwise.

6.1. Global stability of unique endemic equilibrium E2

In the previous sections, we have performed the local analysis of the delayed model system but due
to mathematical complexity, it is very difficult to obtain the explicit parametric relation for local stabil-
ity. Therefore, in this section, we shall establish the global stability of the unique endemic equilibrium
E2 by constructing a suitable Lyapunov function.

Theorem 12. IfR0 > 1, τ1 > 0 and τ2 > 0, the unique endemic equilibrium E2 of the model system (2.1)
is globally asymptotically stable under following parametric conditions a < min{δ, 2a0}, δ

2
0 <

4γµ2

3(2µ+δ) ,

(du1)2 < 2a0γµ
2

3Λ2(2µ+δ) and ((2µ + δ)du1Z∗ − 2µγ)2 < 4
3γµ

2(2µ + δ).

Proof. For global stability, we consider the following positive definite function in
∑

,

U3(S , I,R,Z) =
1
2
[
(S − S ∗) + (I − I∗) + (R − R∗)

]2
+

K1

2
(R − R∗)2 + K2

(
I − I∗ − I∗ ln

I
I∗

)
+

1
2

(Z − Z∗)2 + µ

∫ t

t−τ1

(R(ν) − R∗)2dν + a
∫ t

t−τ2

(I(ν) − I∗)2dν.

The positive constants K1 and K2 will be selected suitably later. Now, we shall differentiate the func-
tion U1 with respect to t along the solution trajectories of the model (2.1) and using the parametric
relationship of equilibrium points. We have,

U̇3 = [(S − S ∗) + (I − I∗) + (R − R∗)]
d(S + I + R)

dt
+ K1(R − R∗)

dR
dt

+ K2
(I − I∗)

I
dI
dt

+(Z − Z∗)
dZ
dt

+ µ((R − R∗)2 − (R(t − τ1) − R∗)2) + a((I − I∗)2 − (I(t − τ2) − I∗)2)
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= [(S − S ∗) + (I − I∗) + (R − R∗)][Λ − µ(S + I + R) − δI] + K1(R − R∗)[γI − µR

+du1ZS − δ0R(t − τ1)] + K2
(I − I∗)

I
(βS I − (µ + δ + γ)I) + (Z − Z∗)(aI(t − τ2) − a0Z)

+µ((R − R∗)2 − (R(t − τ1) − R∗)2) + a((I − I∗)2 − (I(t − τ2) − I∗)2)
= [(S − S ∗) + (I − I∗) + (R − R∗)][−µ(S − S ∗) − (µ + δ)(I − I∗) − µ(R − R∗)] + K1

(R − R∗)[γ(I − I∗) − µ(R − R∗) − δ0(R(t − τ1) − R∗) + du1(ZS − Z∗S ∗)] + K2(I − I∗)
(βS − βS ∗) + (Z − Z∗)(a(I(t − τ2) − I∗) − a0(Z − Z∗)) + µ(R − R∗)2

−µ(R(t − τ1) − R∗)2 + a((I − I∗)2 − (I(t − τ2) − I∗)2)
= −µ(S − S ∗)2 − (µ + δ)(I − I∗)2 − µ(R − R∗)2 − (2µ + δ)(S − S ∗)(I − I∗) − 2µ(S − S ∗)

(R − R∗) − (2µ + δ)(R − R∗)(I − I∗) + K1γ(R − R∗)(I − I∗) − K1µ(R − R∗)2 − K1δ0

(R − R∗)(R(t − τ1) − R∗) + K1du1Z∗(S − S ∗)(R − R∗) + K1du1S (Z − Z∗)(R − R∗)
+K2β(S − S ∗)(I − I∗) + a(I(t − τ2) − I∗)(Z − Z∗) − a0(Z − Z∗)2 + µ(R − R∗)2

−µ(R(t − τ1) − R∗)2 + a((I − I∗)2 − (I(t − τ2) − I∗)2).

Now, selecting and replacing the values of positive constants as: K1 =
2µ + δ

γ
and K2 =

2µ + δ

β
, we

have

U̇3 = −µ(S − S ∗)2 − µ(I − I∗)2 − (δ − a)(I − I∗)2 −
2µ + δ

γ
µ(R − R∗)2 −

2µ + δ

γ
δ0(R − R∗)

(R(t − τ1) − R∗) +

(
2µ + δ

γ
du1Z∗ − 2µ

)
(S − S ∗)(R − R∗) +

2µ + δ

γ
du1S (Z − Z∗)(R − R∗)

+a(I(t − τ2) − I∗)(Z − Z∗) − a0(Z − Z∗)2 − µ(R(t − τ1) − R∗)2 − a(I(t − τ2) − I∗)2

= −H1((S − S ∗)(R − R∗)) − H2((R − R∗)(R(t − τ1) − R∗)) − H3((Z − Z∗)(R − R∗))
−H4((I(t − τ2) − I∗)(Z − Z∗)),

where H1((S − S ∗)(R − R∗)) =
[
µ(S − S ∗)2 −

(
2µ+δ

γ
du1Z∗ − 2µ

)
(S − S ∗)(R − R∗) +

2µ+δ

3γ µ(R − R∗)2
]
,

H2((R − R∗)(R(t − τ1) − R∗)) =
[

2µ+δ

3γ µ(R − R∗)2 +
2µ+δ

γ
δ0(R − R∗)(R(t − τ1) − R∗) + µ(R(t − τ1) − R∗)2

]
,

H3((Z − Z∗)(R − R∗)) =
[

a0
2 (Z − Z∗)2 −

2µ+δ

γ
du1S (Z − Z∗)(R − R∗) +

2µ+δ

3γ µ(R − R∗)2
]

and H4((I(t − τ2) −

I∗)(Z − Z∗)) =
[
a(I(t − τ2) − I∗)2 − a(I(t − τ2) − I∗)(Z − Z∗) + a0

2 (Z − Z∗)2
]
. Note that within the feasi-

ble
∑

, U̇3 ≤ 0 if following parametric conditions a < min{δ, 2a0}, δ
2
0 <

4γµ2

3(2µ+δ) , (du1)2 < 2a0γµ
2

3Λ2(2µ+δ) and
((2µ + δ)du1Z∗ − 2µγ)2 < 4

3γµ
2(2µ + δ) hold true. It is observed that U̇3 = 0 if and only if at endemic

equilibrium E2 and U̇3 < 0 otherwise within the feasible region
∑

, therefore the singleton set {E2} is
the largest positively invariant set contained in {(S , I,R,Z) ∈

∑
: U̇3 = 0}. Hence, in the interior of

∑
,

Lyapunov LaSalle’s theorem [62] ensures that the endemic equilibrium E2 is globally asymptotically
stable.

Example 4. Here, we perform the numerical validation of the aforesaid global stability result stated
in Theorem 12 when the model has a unique endemic equilibrium when R0 > 1. For this purpose, we
consider a set of the same parameters as mentioned in Example 2. For this set of parameters, the delay
model has the unique endemic equilibrium E2 = (49.6, 6.67, 26.73, 0.66) and a disease free equilibrium
E1 = (250, 0, 0, 0) (unstable) along with the basic reproduction number R0 = 5.0403 > 1. Now, we
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calculate the parametric conditions numerically and are given as: a − min{δ, 2a0} = −0.19 < 0,
δ2

0−
4γµ2

3(2µ+δ) = −7.3765×10−5 < 0, (du1)2−
2a0γµ

2

3Λ2(2µ+δ) = −1.9730×10−7 < 0 and ((2µ+ δ)du1Z∗−2µγ)2−
4
3γµ

2(2µ + δ) = −1.2844 × 10−5 < 0. Clearly, for this set of parameters, all the parametric relations
hold true which insures that the endemic equilibrium E2 is globally stable for all time lags τ1, τ2 > 0
(Theorem 12).

Finally, a rich and complex dynamics are obtained for the model in the presence of time delays.
Whereas, in the absence of one time delay either τ1 or τ2, the delay model system shows the occurrence
of oscillations through Hopf bifurcation. Further, in the presence of τ2 only (τ1 = 0), the existence of
Hopf-Hopf bifurcation is established at two different delays for the delay model. In addition, global
analysis is also established for various cases by constructing suitable Lyapunov functions which is
itself very mathematically challenging due to high mathematical complexity.

7. Conclusions

The effects of delayed information (τ2) and the delay in immunity loss (τ1) are studied for infec-
tious diseases by formulating a delay mathematical model. To describe the dynamics of the delayed
information, a rate equation is considered in which the density of information depends on the infective
population as well as social media. Model analysis is performed and stability of equilibrium points is
carried out for different scenarios of delay parameters. We observed that when the rate of immunity
loss is small, the disease free equilibrium will be always stable otherwise it becomes unstable at a large
rate. This happens due to the delay effect considered in the waning of immunity, if the delay parameter
is smaller than a threshold quantity for R0 < 1, the disease free equilibrium is stable whereas it loses
its stability as the delay crosses the threshold quantity. Generally, such type of phenomenon does not
appear in non-delay models. In addition, when the effect of both delays is small enough, the unique en-
demic equilibrium is found locally stable for R0 > 1 and under some parametric conditions. Moreover,
when both the delays (τ1 and τ2) cross critical values (either in presence of a single delay only or both
delays), the existence of periodic solutions (via Hopf bifurcation) is investigated in this study. This
leads to the existence of oscillatory persistence of disease within the population and hence, execution
of control measures becomes challenging due to high and low epidemic peaks. Such Hopf bifurca-
tion results follow the observation posed by a few researchers such as Yadav and Srivastava [54], and
Zhang et al. [55] (single delay cases with the constant effect of information) but in the more general
context as our model considered the dynamic effect of information with two discrete time delays. Our
findings also follow similar facts as discussed by Lv et al. [43] for the delay considered in COVID-19
booster dose and antibody failure. Furthermore, the existence of multiple stability switches, termed as
Hopf-Hopf (double) bifurcation at two different values of delay, is also examined for the case when
only τ2 is present (τ1 = 0). In this case, at the first critical value of the τ2, the system is destabilised and
undergoes the first Hopf bifurcation (the endemic equilibrium loses stability) whereas as τ2 increases,
the system again undergoes the second Hopf bifurcation (the endemic equilibrium regains the stability)
at another critical value of the delay. Therefore, both delays (reporting of infective and delay in waning
the immunity) not only destabilise the system but also retain its stability which is very important as
the contraction of infection is possible. Here, we infer that our obtained stability switch result falls in
line with the result discussed by Kumar and others [47] and by Barbarossa and others [48] but with
only single delay cases and different biological context. Therefore, our study also establishes similar
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kinds of important results under a simple mathematical form of delay factors considered in the model
system to the other studies. Moreover, the global stability of the unique endemic equilibrium point is
established by constructing Lyapunov functions in various cases for time delays which is itself difficult
and challenging under high mathematical complexity raised by two crucial delays. The global stability
result infers that the disease will persist in an endemic sense irrespective of delay impacts and can be
suppressed if the basic reproduction number is below one. Mostly, delay models with a single delay, in
this line of work, explore the local bifurcation analysis, not global properties. Finally, our study infers
that the model system exhibits rich and complex dynamics locally as well as globally, and provides
important insight. As, during the outbreak, optimal usage and allocation of suitable control measures
with minimum economic damage are very difficult in any delay environment, hence, the corresponding
optimal control problems may be possible pathways to solve such problems. In coming future, we shall
try to address such problems.
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