The mathematical oncology has received a lot of interest in recent years since it helps illuminate pathways and provides valuable quantitative predictions, which will shape more effective and focused future therapies. We discuss a new fractal-fractional-order model of the interaction among tumor cells, healthy host cells and immune cells. The subject of this work appears to show the relevance and ramifications of the fractal-fractional order cancer mathematical model. We use fractal-fractional derivatives in the Caputo senses to increase the accuracy of the cancer and give a mathematical analysis of the proposed model. First, we obtain a general requirement for the existence and uniqueness of exact solutions via Perov's fixed point theorem. The numerical approaches used in this paper are based on the Grünwald-Letnikov nonstandard finite difference method due to its usefulness to discretize the derivative of the fractal-fractional order. Then, two types of stabilities, Lyapunov's and Ulam-Hyers' stabilities, are established for the Incommensurate fractional-order and the Incommensurate fractal-fractional, respectively. The numerical results of this study are compatible with the theoretical analysis. Our approaches generalize some published ones because we employ the fractal-fractional derivative in the Caputo sense, which is more suitable for considering biological phenomena due to the significant memory impact of these processes. Aside from that, our findings are new in that we use Perov's fixed point result to demonstrate the existence and uniqueness of the solutions. The way of expressing the Ulam-Hyers' stabilities by utilizing the matrices that converge to zero is also novel in this area.
Citation: Noura Laksaci, Ahmed Boudaoui, Seham Mahyoub Al-Mekhlafi, Abdon Atangana. Mathematical analysis and numerical simulation for fractal-fractional cancer model[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18083-18103. doi: 10.3934/mbe.2023803
The mathematical oncology has received a lot of interest in recent years since it helps illuminate pathways and provides valuable quantitative predictions, which will shape more effective and focused future therapies. We discuss a new fractal-fractional-order model of the interaction among tumor cells, healthy host cells and immune cells. The subject of this work appears to show the relevance and ramifications of the fractal-fractional order cancer mathematical model. We use fractal-fractional derivatives in the Caputo senses to increase the accuracy of the cancer and give a mathematical analysis of the proposed model. First, we obtain a general requirement for the existence and uniqueness of exact solutions via Perov's fixed point theorem. The numerical approaches used in this paper are based on the Grünwald-Letnikov nonstandard finite difference method due to its usefulness to discretize the derivative of the fractal-fractional order. Then, two types of stabilities, Lyapunov's and Ulam-Hyers' stabilities, are established for the Incommensurate fractional-order and the Incommensurate fractal-fractional, respectively. The numerical results of this study are compatible with the theoretical analysis. Our approaches generalize some published ones because we employ the fractal-fractional derivative in the Caputo sense, which is more suitable for considering biological phenomena due to the significant memory impact of these processes. Aside from that, our findings are new in that we use Perov's fixed point result to demonstrate the existence and uniqueness of the solutions. The way of expressing the Ulam-Hyers' stabilities by utilizing the matrices that converge to zero is also novel in this area.
[1] | World Health Organization, Cancer: Fact sheets, 2020, Accessed 3 February 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer. |
[2] | A. Fasano, A. Bertuzzi, A. Gandolfi, Mathematical modelling of tumour growth and treatment, in Complex Systems in Biomedicine, Springer, Milano, (2006), 71–108. https://doi.org/10.1007/88-470-0396-2_3 |
[3] | T. Roose, S. J. Chapman, P. K. Maini. Mathematical models of a vascular tumor growth. SIAM Rev., 49 (2007), 179–208. https://doi.org/10.1137/S0036144504446291 |
[4] | J. S. Lowengrub, H. B. Frieboes, F. Jin, Y. L. Chuang, X. Li, P. Macklin, et al., Nonlinear modelling of cancer: bridging the gap between cells and tumours, Nonlinearity, 23 (2009), R1. https://doi.org/10.1088/0951-7715/23/1/R01 doi: 10.1088/0951-7715/23/1/R01 |
[5] | H. M. Byrne, Mathematical biomedicine and modeling a vascular tumor growth, De Gruyter, 2012. |
[6] | A. Debbouche, M. V. Polovinkina, I. P. Polovinkin, S. A. David, On the stability of stationary solutions in diffusion models of oncological processes, Eur. Phys. J. Plus, 136 (2021), 0–8. https://doi.org/10.1140/epjp/s13360-020-01070-8 doi: 10.1140/epjp/s13360-020-01070-8 |
[7] | A. Carlos, J. A.Valentim, Rabi, S. A. David, Fractional mathematical oncology: On the potential of non-integer order calculus applied to interdisciplinary models, Biosystems, 204 (2021), 104377. https://doi.org/10.1016/j.biosystems.2021.104377 doi: 10.1016/j.biosystems.2021.104377 |
[8] | Z. Sabir, M. Munawar, M. A. Abdelkawy, M. A. Z. Raja, C. Ünlü, M. B. Jeelani, A. S. Alnahdi, Numerical investigations of the fractional-order mathematical model underlying immune-chemotherapeutic treatment for breast cancer using the neural networks, Fractal Fract., 6 (2022), 184. https://doi.org/10.3390/fractalfract6040184 doi: 10.3390/fractalfract6040184 |
[9] | J. Manimaran, L. Shangerganesh, A. Debbouche, V. Antonov, Numerical solutions for time-fractional cancer invasion system with nonlocal diffusion, Front. Phys., 7 (2019). https://doi.org/10.3389/fphy.2019.00093 |
[10] | E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), 130–141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 |
[11] | T. Matsumoto, A chaotic attractor from Chua's circuit, IEEE Trans. Circuits Syst., 31 (1984), 1055–1058. https://doi.org/10.1109/TCS.1984.1085459 doi: 10.1109/TCS.1984.1085459 |
[12] | K. Agladze, V. Krinsky, A. Pertsov, Chaos in the non-stirred Belousov–Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures, Nature, 308 (1984), 834–835. https://doi.org/10.1038/308834a0 doi: 10.1038/308834a0 |
[13] | W. C. Chen, Nonlinear dynamics and chaos in a fractional-order financial system, Chaos Solitons Fractals, 36 (2008), 1305–1314. https://doi.org/10.1016/j.chaos.2006.07.051 doi: 10.1016/j.chaos.2006.07.051 |
[14] | N. Sweilam, S. AL. Mekhlafi, D. Mohamed, Novel chaotic systems with fractional differential operators: Numerical approaches, Chaos Solitons Fractals, 142 (2021), 110475. https://doi.org/10.1016/j.chaos.2020.110475 doi: 10.1016/j.chaos.2020.110475 |
[15] | K. M. Ravi, A. Divya, C. Adwitiya, H. Sk. Sarif, Dynamics of a three dimensional chaotic cancer model, Int. J. Math. Trends Technol., 53 (2018), 353–368. https://doi.org/10.14445/22315373/IJMTT-V53P544 doi: 10.14445/22315373/IJMTT-V53P544 |
[16] | N. Debbouche, A. Ouannas, G. Grassi, A. B. A. Al-Hussein, F. R. Tahir, K. M. Saad, et al., Chaos in cancer tumor growth model with commensurate and incommensurate fractional-order derivatives, Comput. Math. Methods Med., 2022 (2022). https://doi.org/10.1155/2022/9898129 |
[17] | S. S. Sajjadi, D. Baleanu, A. Jajarmi, H. M. Pirouz, A new adaptive synchronization and hyperchaos control of a biological snap oscillator, Chaos Solitons Fractals, 138 (2020), 109919. https://doi.org/10.1016/j.chaos.2020.109919 doi: 10.1016/j.chaos.2020.109919 |
[18] | S. Vaidyanathan, Global chaos synchronization of the Lotka-Volterra biological systems with four competitive species via active control, Int. J. PharmTech Res., 8 (2015), 206–217. |
[19] | C. Huang, W. Juan, C. Xiaoping, C. Jinde, Bifurcations in a fractional-order BAM neural network with four different delays, Neural Networks, 141 (2021), 344–354. https://doi.org/10.1016/j.neunet.2021.04.005 doi: 10.1016/j.neunet.2021.04.005 |
[20] | P. Li, Y. Lu, C. Xu, J. Ren, Insight into hopf bifurcation and control methods in fractional order BAM neural networks incorporating symmetric structure and delay, Cognit. Comput., (2023), 1–43. https://doi.org/10.1007/s12559-023-10155-2 |
[21] | C. Xu, D. Mu, Y. Pan, C. Aouiti, L. Yao, Exploring bifurcation in a fractional-order predator-prey system with mixed delays, J. Appl. Anal. Comput., 13 (2023), 1119–1136. https://doi.org/10.11948/20210313 doi: 10.11948/20210313 |
[22] | A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027 |
[23] | J. Gomez-Aguilar, T. Cordova-Fraga, T. Abdeljawad, A. Khan, H. Khan, Analysis of fractal–fractional Malaria transmission model, Fractals, 28 (2020), 2040041. https://doi.org/10.1142/S0218348X20400411 doi: 10.1142/S0218348X20400411 |
[24] | K. Shah, M. Arfan, I. Mahariq, A. Ahmadian, S. Salahshour, M. Ferrara, Fractal-fractional mathematical model addressing the situation of corona virus in Pakistan, Results Phys., 19 (2020), 103560. https://doi.org/10.1016/j.rinp.2020.103560 doi: 10.1016/j.rinp.2020.103560 |
[25] | M. Alqhtani, K. M. Saad, Fractal–fractional Michaelis–Menten enzymatic reaction model via different kernels, Fractal Fract., 6 (2021), 13. https://doi.org/10.3390/fractalfract6010013 doi: 10.3390/fractalfract6010013 |
[26] | K. M. Saad, M. Alqhtani, J. Gómez-Aguilar, Fractal-fractional study of the hepatitis c virus infection model, Results Phys., 19 (2020), 103555. https://doi.org/10.1016/j.rinp.2020.103555 doi: 10.1016/j.rinp.2020.103555 |
[27] | R. E. Mickens, Nonstandard finite difference models of differential equations, World scientific, 1994. |
[28] | R. E. Mickens, Applications of nonstandard finite difference schemes, World Scientific, 2000. |
[29] | D. Baleanu, R. L. Magin, S. Bhalekar, V. Daftardar-Gejji, Chaos in the fractional order nonlinear Bloch equation with delay, Commun. Nonlinear Sci. Numerical Simul., 25 (2015), 41–49. https://doi.org/10.1111/aej.12107 doi: 10.1111/aej.12107 |
[30] | R. S. Varga, Matrix iterative analysis Springer-Verlag, New York, Berlin, Heidelberg, 2000. |
[31] | A. Perov, On the Cauchy problem for a system of ordinary differential equations, Priblijen, Metod Res. Dif. Urav. Kiev, 1964. |
[32] | A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal–fractional operators, Chaos Solitons Fractals, 123 (2019), 320–337. https://doi.org/10.1016/j.chaos.2019.04.020 doi: 10.1016/j.chaos.2019.04.020 |
[33] | A. J. Arenas, G. Gonzalez-Parra, B. M. Chen-Charpentier, Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order, Math. Comput. Simul., 121 (2016), 48–63. https://doi.org/10.1016/j.matcom.2015.09.001 doi: 10.1016/j.matcom.2015.09.001 |
[34] | Z. Iqbal, N. Ahmed, D. Baleanu, W. Adel, M. Rafiq, M. A. u. Rehman, Positivity and boundedness preserving numerical algorithm for the solution of fractional nonlinear epidemic model of HIV/AIDS transmission, Chaos Solitons Fractals, 134 (2020), 109706. https://doi.org/10.1016/j.chaos.2020.109706 doi: 10.1016/j.chaos.2020.109706 |
[35] | R. Scherer, S. L. Kalla, Y. Tang, J. Huang, The grünwald–letnikov method for fractional differential equations, Comput. Math. Appl., 62 (2011), 902–917. https://doi.org/10.1016/j.camwa.2011.03.054 doi: 10.1016/j.camwa.2011.03.054 |
[36] | M. S. Tavazoei, M. Haeri, A necessary condition for double scroll attractor existence in fractional-order systems, Phys. Letters A, 367 (2007), 102–113. https://doi.org/10.1016/j.physleta.2007.05.081 doi: 10.1016/j.physleta.2007.05.081 |
[37] | W. Deng, C. Li, J. Lü, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 48 (2007), 409–416. https://doi.org/10.1007/s11071-006-9094-0 doi: 10.1007/s11071-006-9094-0 |
[38] | M. S. Tavazoei, M. Haeri, Chaotic attractors in incommensurate fractional order systems, Phys. D Nonlinear Phenom., 237 (2008), 2628–2637. https://doi.org/10.1016/j.physd.2008.03.037 doi: 10.1016/j.physd.2008.03.037 |
[39] | R. K. Maddali, D. Ahluwalia, A. Chaudhuri, S. S. Hassan, Dynamics of a three dimensional chaotic cancer model, Int. J. Math. Trends Technol., 53 (2018), 353–368. https://doi.org/10.14445/22315373/IJMTT-V53P544 doi: 10.14445/22315373/IJMTT-V53P544 |
[40] | C. Urs, Ulam-Hyers stability for coupled fixed points of contractive type operators, J. Nonlinear Sci. Appl., 6 (2013), 124–136. https://doi.org/10.22436/jnsa.006.02.08 doi: 10.22436/jnsa.006.02.08 |