Research article Special Issues

Novel stochastic dynamics of a fractal-fractional immune effector response to viral infection via latently infectious tissues


  • Received: 20 July 2022 Revised: 31 July 2022 Accepted: 02 August 2022 Published: 12 August 2022
  • In this paper, the global complexities of a stochastic virus transmission framework featuring adaptive response and Holling type II estimation are examined via the non-local fractal-fractional derivative operator in the Atangana-Baleanu perspective. Furthermore, we determine the existence-uniqueness of positivity of the appropriate solutions. Ergodicity and stationary distribution of non-negative solutions are carried out. Besides that, the infection progresses in the sense of randomization as a consequence of the response fluctuating within the predictive case's equilibria. Additionally, the extinction criteria have been established. To understand the reliability of the findings, simulation studies utilizing the fractal-fractional dynamics of the synthesized trajectory under the Atangana-Baleanu-Caputo derivative incorporating fractional-order $ \alpha $ and fractal-dimension $ \wp $ have also been addressed. The strength of white noise is significant in the treatment of viral pathogens. The persistence of a stationary distribution can be maintained by white noise of sufficient concentration, whereas the eradication of the infection is aided by white noise of high concentration.

    Citation: Saima Rashid, Rehana Ashraf, Qurat-Ul-Ain Asif, Fahd Jarad. Novel stochastic dynamics of a fractal-fractional immune effector response to viral infection via latently infectious tissues[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11563-11594. doi: 10.3934/mbe.2022539

    Related Papers:

  • In this paper, the global complexities of a stochastic virus transmission framework featuring adaptive response and Holling type II estimation are examined via the non-local fractal-fractional derivative operator in the Atangana-Baleanu perspective. Furthermore, we determine the existence-uniqueness of positivity of the appropriate solutions. Ergodicity and stationary distribution of non-negative solutions are carried out. Besides that, the infection progresses in the sense of randomization as a consequence of the response fluctuating within the predictive case's equilibria. Additionally, the extinction criteria have been established. To understand the reliability of the findings, simulation studies utilizing the fractal-fractional dynamics of the synthesized trajectory under the Atangana-Baleanu-Caputo derivative incorporating fractional-order $ \alpha $ and fractal-dimension $ \wp $ have also been addressed. The strength of white noise is significant in the treatment of viral pathogens. The persistence of a stationary distribution can be maintained by white noise of sufficient concentration, whereas the eradication of the infection is aided by white noise of high concentration.



    加载中


    [1] S. Cassels, S. J. Clark, M. Morris, Mathematical models for HIV transmission dynamics, J. Acquired Immune Defic. Syndr., 47 (2008), S34–S39. https://doi.org/10.1097/QAI.0b013e3181605da3 doi: 10.1097/QAI.0b013e3181605da3
    [2] O. S. Deep, S. Nallamalli, L. N. S. Naik, G. V. SaiTeja, Mathematical model for transmission of Ebola, Procedia Comput. Sci., 48 (2015), 741–745. https://doi.org/10.1016/j.procs.2015.04.210 doi: 10.1016/j.procs.2015.04.210
    [3] A. Zeb, E. Alzahrani, V. S. Erturk, G. Zaman, Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class, Biomed. Res. Int., 2020 (2020), 1–7. https://doi.org/10.1155/2020/3452402 doi: 10.1155/2020/3452402
    [4] M. A. Khan, Dengue infection modeling and its optimal control analysis in East Java, Indonesia, Heliyon, 7 (2021), e06023. https://doi.org/10.1016/j.heliyon.2021.e06023 doi: 10.1016/j.heliyon.2021.e06023
    [5] S. Banerjee, N. Gupta, P. Kodan, A. Mittal, Y. Ray, N. Nischal, et al., Nipah virus disease: A rare and intractable disease, Intractable Rare Dis. Res., 8 (2019), 1–8. https://doi.org/10.5582/irdr.2018.01130 doi: 10.5582/irdr.2018.01130
    [6] S. Zhao, Z. Xu, Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China, Int. J. Epidemiol., 29 (2000), 744–752. https://doi.org/10.1093/ije/29.4.744 doi: 10.1093/ije/29.4.744
    [7] S. Seewaldt, H. E. Thomas, M. Ejrnaes, U. Christen, T. Wolfe, E. Rodrigo, et al., Virus-induced autoimmune diabetes: Most beta-cells die through inflammatory cytokines and not perforin from autoreactive (anti-viral) cytotoxic T-lymphocytes, Diabetes, 49 (2000), 1801–1809. https://doi.org/10.2337/diabetes.49.11.1801 doi: 10.2337/diabetes.49.11.1801
    [8] M. Eichelberger, W. Allan, M. Zijlstra, R. Jaenisch, P. C. Doherty, Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells, J. Exp. Med., 174 (1994), 875–880. https://doi.org/10.1084/jem.174.4.875 doi: 10.1084/jem.174.4.875
    [9] D. J. Topham, R. A. Tripp, P. C. Doherty, CD8+ T cells clear influenza virus by perforin or Fas-dependent processes, J. Immunol., 159 (1997), 5197–5200.
    [10] S. Pan, S. P. Chakrabarty, Threshold dynamics of HCV model with cell-to-cell transmission and a non-cytolytic cure in the presence of humoral immunity, Commun. Nonlinear Sci. Numer. Simul., 61 (2018), 180–197. https://doi.org/10.1016/j.cnsns.2018.02.010 doi: 10.1016/j.cnsns.2018.02.010
    [11] A. M. Elaiw, N. H. AlShamrani, Global properties of nonlinear humoral immunity viral infection models, Int. J. Biomath., 8 (2015), 1550058. https://doi.org/10.1142/S1793524515500588 doi: 10.1142/S1793524515500588
    [12] Y. Luo, L. Zhang, T. Zheng, Z. Teng, Analysis of a diffusive virus infection model with humoral immunity, cell-to-cell transmission and nonlinear incidence, Physica A, 535 (2019), 122415. https://doi.org/10.1016/j.physa.2019.122415 doi: 10.1016/j.physa.2019.122415
    [13] Y. Wang, M. Lu, D. Jiang, Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays, Math. Biosci. Eng., 18 (2021), 274–299. https://doi.org/10.3934/mbe.2021014 doi: 10.3934/mbe.2021014
    [14] K. Hattaf, Global stability and Hopf bifurcation of a generalized viral infection model with multi-delays and humoral immunity, Physica A, 545 (2020), 123689. https://doi.org/10.1016/j.physa.2019.123689 doi: 10.1016/j.physa.2019.123689
    [15] C. Rajivganthi, F. A. Rihan, Global dynamics of a stochastic viral infection model with latently infected cells, Appl. Sci., 11 (2021), 10484. https://doi.org/10.3390/app112110484 doi: 10.3390/app112110484
    [16] O. Olaide, A. E. S. Ezugwu, T. Mohamed, L. Abualigah, Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm, IEEE Access, 10 (2022), 1–38. https://doi.org/10.1109/ACCESS.2022.3147821 doi: 10.1109/ACCESS.2022.3147821
    [17] A. E. Ezugwu, J. O. Agushaka, L. Abualigah, S. Mirjalili, A. H. Gandomi, Prairie dog optimization algorithm, Neural Comput. Appl., 2022 (2022), 1–49. https://doi.org/10.1007/s00521-022-07530-9 doi: 10.1007/s00521-022-07530-9
    [18] J. O. Agushaka, A. E. Ezugwu, L. Abualigah, Dwarf mongoose optimization algorithm, Comput. Methods Appl. Mech. Eng., 391 (2022), 114570. https://doi.org/10.1016/j.cma.2022.114570 doi: 10.1016/j.cma.2022.114570
    [19] L. Abualigah, D. Yousri, M. A. Elaziz, A. A. Ewees, M. A. Al-qaness, A. H. Gandom, Aquila optimizer: A novel meta-heuristic optimization algorithm, Reptile Search Algorithm (RSA), Comput. Ind. Eng., 157 (2021), 107250, https://doi.org/10.1016/j.cie.2021.107250 doi: 10.1016/j.cie.2021.107250
    [20] M. E. Omaba, Growth moment, stability and asymptotic behaviours of solution to a class of time-fractal-fractional stochastic differential equation, Chaos Solitons Fractals, 147 (2021), 110958. https://doi.org/10.1016/j.chaos.2021.110958 doi: 10.1016/j.chaos.2021.110958
    [21] M. Gao, D. Jiang, X. Wen, Stationary distribution and extinction for a stochastic two-compartment model of B-cell chronic lymphocytic leukemia, Int. J. Biomath., 14 (2021), 2150065. https://doi.org/10.1142/S1793524521500650 doi: 10.1142/S1793524521500650
    [22] Q. Liu, D. Jiang, Dynamical behavior of a stochastic multigroup staged-progression HIV model with saturated incidence rate and higher-order perturbations, Int. J. Biomath., 14 (2021), 2150051. https://doi.org/10.1142/S1793524521500510 doi: 10.1142/S1793524521500510
    [23] C. Gokila, M. Sambath, The threshold for a stochastic within-host CHIKV virus model with saturated incidence rate, Int. J. Biomath., 14 (2021), 2150042. https://doi.org/10.1142/S179352452150042X doi: 10.1142/S179352452150042X
    [24] L. Abualigah, A. Diabat, P. Sumari, A. H. Gandomi, Applications, deployments, and integration of internet of drones (IoD), IEEE Sens. J., 99 (2021), 25532–25546. https://doi.org/10.1109/JSEN.2021.3114266 doi: 10.1109/JSEN.2021.3114266
    [25] T. H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–176.
    [26] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, 1993.
    [27] T. H. Zhao, M. I. Khan, Y. M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math. Methods Appl. Sci., 2021 (2021). https://doi.org/10.1002/mma.7310
    [28] K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y. M. Chu, Almost sectorial operators on $\Psi$-Hilfer derivative fractional impulsive integro-differential equations, Math. Methods Appl. Sci., 2021 (2021). https://doi.org/10.1002/mma.7954
    [29] Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, J. R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract., 5 (2021), 119. https://doi.org/10.3390/fractalfract5030119 doi: 10.3390/fractalfract5030119
    [30] S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. https://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
    [31] F. Mainardi, Fractional calculus, in Some Basic Problems in Continuum and Statistical Mechanics, Springer, Vienna, (1997), 291–348. https://doi.org/10.1007/978-3-662-03425-5_12
    [32] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [33] W. M. Qian, H. H. Chu, M. K. Wang, Y. M. Chu, Sharp inequalities for the Toader mean of order $-1$ in terms of other bivariate means, J. Math. Inequal., 16 (2022), 127–141. https://doi.org/10.7153/jmi-2022-16-10 doi: 10.7153/jmi-2022-16-10
    [34] T. H. Zhao, H. H. Chu, Y. M. Chu, Optimal Lehmer mean bounds for the $n$th power-type Toader mean of $n = -1, 1, 3$, J. Math. Inequal., 16 (2022), 157–168. https://doi.org/10.7153/jmi-2022-16-12 doi: 10.7153/jmi-2022-16-12
    [35] T. H. Zhao, M. K. Wang, Y. Q. Dai, Y. M. Chu, On the generalized power-type Toader mean, J. Math. Inequal., 16 (2022), 247–264. https://doi.org/10.7153/jmi-2022-16-18 doi: 10.7153/jmi-2022-16-18
    [36] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 2 (2015), 73–85. https://doi.org/10.18576/pfda/020202 doi: 10.18576/pfda/020202
    [37] C. Li, F. Zeng, Numerical Methods for Fractional Calculus, Chapman & Hall/CRC, Boca Raton, 2019.
    [38] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, preprint, arXiv: 1602.03408.
    [39] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 396 (2017), 102. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
    [40] M. Versaci, G. Angiulli, P. Crucitti, D. D. Carlo, F. Laganá, D. Pellicanó, et al., A fuzzy similarity-based approach to classify numerically simulated and experimentally detected carbon fiber-reinforced polymer plate defects, Sensors, 22 (2022), 4232. https://doi.org/10.3390/s22114232 doi: 10.3390/s22114232
    [41] S. N. Hajiseyedazizi, M. E. Samei, J. Alzabut, Y. M. Chu, On multi-step methods for singular fractional $q$-integro-differential equations, Open Math., 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093
    [42] S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y. M. Chu, Some recent developments on dynamical $\hbar$-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels, Fractals, 30 (2022), 2240110. https://doi.org/10.1142/S0218348X22401107 doi: 10.1142/S0218348X22401107
    [43] F. Z. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: Time-fractional fishers equations, Fractals, 30 (2022), 2240051. https://doi.org/10.1142/S0218348X22400515 doi: 10.1142/S0218348X22400515
    [44] S. Rashid, E. I. Abouelmagd, S. Sultana, Y. M. Chu, New developments in weighted $n$-fold type inequalities via discrete generalized ĥ-proportional fractional operators, Fractals, 30 (2022), 2240056. https://doi.org/10.1142/S0218348X22400564 doi: 10.1142/S0218348X22400564
    [45] S. A. Iqbal, M. G. Hafez, Y. M. Chu, C. Park, Dynamical analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivativae, J. Appl. Anal. Comput., 12 (2022), 770–789. https://doi.org/10.11948/20210324 doi: 10.11948/20210324
    [46] X. B. Zhang, X. D. Wang, H. F. Huo, Extinction and stationary distribution of a stochastic SIRS epidemic model with standard incidence rate and partial immunity, Physica A, 531 (2019), 121548. https://doi.org/10.1016/j.physa.2019.121548 doi: 10.1016/j.physa.2019.121548
    [47] F. A. Rihan, H. J. Alsakaji, Analysis of a stochastic HBV infection model with delayed immune response, Math. Biosci. Eng., 18 (2021), 5194–5220. https://doi.org/10.3934/mbe.2021264 doi: 10.3934/mbe.2021264
    [48] X. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester UK, 1997.
    [49] K. X. Li, Stochastic delay fractional evolution equations driven by fractional Brownian motion, Math. Methods Appl. Sci., 38 (2015), 1582–1591. https://doi.org/10.1002/mma.3169 doi: 10.1002/mma.3169
    [50] A. Kerboua, A. Debbouche, D. Baleanu, Approximate controllability of Sobolev-type nonlocal fractional stochastic dynamic systems in Hilbert spaces, Abstr. Appl. Anal., 2013 (2013), 262191. https://doi.org/10.1155/2013/262191 doi: 10.1155/2013/262191
    [51] B. Pei, Y. Xu, On the non-Lipschitz stochastic differntial equations driven by fractional Brownian motion, Adv. Differ. Equations, 2016 (2016), 194. https://doi.org/10.1186/s13662-016-0916-1 doi: 10.1186/s13662-016-0916-1
    [52] A. Atangana, S. I. Araz, Modeling and forecasting the spread of COVID-19 with stochastic and deterministic approaches: Africa and Europe, Adv. Differ. Equations, 2021 (2021), 1–107. https://doi.org/10.1186/s13662-021-03213-2 doi: 10.1186/s13662-021-03213-2
    [53] B. S. T. Alkahtani, I. Koca, Fractional stochastic SIR model, Results Phys., 24 (2021), 104124. https://doi.org/10.1016/j.rinp.2021.104124 doi: 10.1016/j.rinp.2021.104124
    [54] S. Rashid, M. K. Iqbal, A. M. Alshehri, R. Ahraf, F. Jarad, A comprehensive analysis of the stochastic fractal-fractional tuberculosis model via Mittag-Leffler kernel and white noise, Results Phys., 39 (2022), 105764. https://doi.org/10.1016/j.rinp.2022.105764 doi: 10.1016/j.rinp.2022.105764
    [55] J. M. Shen, Z. H. Yang, W. M. Qian, W. Zhang, Y. M. Chu, Sharp rational bounds for the gamma function, Math. Inequal. Appl., 23 (2020), 843–853. https://doi.org/10.7153/mia-2020-23-68 doi: 10.7153/mia-2020-23-68
    [56] X. Song, S. Wang, J. Dong, Stability properties and Hopf bifurcation of a delayed viral infection model with lytic immune response, J. Math. Anal. Appl., 373 (2011), 345–355. https://doi.org/10.1016/j.jmaa.2010.04.010 doi: 10.1016/j.jmaa.2010.04.010
    [57] D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses, J. Gen. Virol., 84 (2003), 1743–1750. https://doi.org/10.1099/vir.0.19118-0 doi: 10.1099/vir.0.19118-0
    [58] N. Yousfi, K. Hattaf, A. Tridane, Modeling the adaptative immune response in HBV infection, J. Math. Biol., 63 (2011), 933–957. https://doi.org/10.1007/s00285-010-0397-x doi: 10.1007/s00285-010-0397-x
    [59] A. Murase, T. Sasaki, T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247–267. https://doi.org/10.1007/s00285-005-0321-y doi: 10.1007/s00285-005-0321-y
    [60] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulations, Mem. Entomol. Soc. Can., 45 (1965), 5–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
    [61] B. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 6th edition, Springer, New York, NY, USA, 2003.
    [62] C Ji, D. Jiang, Treshold behaviour of a stochastic SIR model, Appl. Math. Modell., 38 (2014), 5067–5079. https://doi.org/10.1016/j.apm.2014.03.037 doi: 10.1016/j.apm.2014.03.037
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1750) PDF downloads(113) Cited by(2)

Article outline

Figures and Tables

Figures(17)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog