Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Novel stochastic dynamics of a fractal-fractional immune effector response to viral infection via latently infectious tissues


  • In this paper, the global complexities of a stochastic virus transmission framework featuring adaptive response and Holling type II estimation are examined via the non-local fractal-fractional derivative operator in the Atangana-Baleanu perspective. Furthermore, we determine the existence-uniqueness of positivity of the appropriate solutions. Ergodicity and stationary distribution of non-negative solutions are carried out. Besides that, the infection progresses in the sense of randomization as a consequence of the response fluctuating within the predictive case's equilibria. Additionally, the extinction criteria have been established. To understand the reliability of the findings, simulation studies utilizing the fractal-fractional dynamics of the synthesized trajectory under the Atangana-Baleanu-Caputo derivative incorporating fractional-order α and fractal-dimension have also been addressed. The strength of white noise is significant in the treatment of viral pathogens. The persistence of a stationary distribution can be maintained by white noise of sufficient concentration, whereas the eradication of the infection is aided by white noise of high concentration.

    Citation: Saima Rashid, Rehana Ashraf, Qurat-Ul-Ain Asif, Fahd Jarad. Novel stochastic dynamics of a fractal-fractional immune effector response to viral infection via latently infectious tissues[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11563-11594. doi: 10.3934/mbe.2022539

    Related Papers:

    [1] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [2] Maysaa Al Qurashi, Saima Rashid, Fahd Jarad . A computational study of a stochastic fractal-fractional hepatitis B virus infection incorporating delayed immune reactions via the exponential decay. Mathematical Biosciences and Engineering, 2022, 19(12): 12950-12980. doi: 10.3934/mbe.2022605
    [3] Ali Moussaoui, Vitaly Volpert . The impact of immune cell interactions on virus quasi-species formation. Mathematical Biosciences and Engineering, 2024, 21(11): 7530-7553. doi: 10.3934/mbe.2024331
    [4] Alia M. Alzubaidi, Hakeem A. Othman, Saif Ullah, Nisar Ahmad, Mohammad Mahtab Alam . Analysis of Monkeypox viral infection with human to animal transmission via a fractional and Fractal-fractional operators with power law kernel. Mathematical Biosciences and Engineering, 2023, 20(4): 6666-6690. doi: 10.3934/mbe.2023287
    [5] H. M. Srivastava, Khaled M. Saad, J. F. Gómez-Aguilar, Abdulrhman A. Almadiy . Some new mathematical models of the fractional-order system of human immune against IAV infection. Mathematical Biosciences and Engineering, 2020, 17(5): 4942-4969. doi: 10.3934/mbe.2020268
    [6] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [7] Fathalla A. Rihan, Hebatallah J. Alsakaji . Analysis of a stochastic HBV infection model with delayed immune response. Mathematical Biosciences and Engineering, 2021, 18(5): 5194-5220. doi: 10.3934/mbe.2021264
    [8] Gesham Magombedze, Winston Garira, Eddie Mwenje . Modelling the human immune response mechanisms to mycobacterium tuberculosis infection in the lungs. Mathematical Biosciences and Engineering, 2006, 3(4): 661-682. doi: 10.3934/mbe.2006.3.661
    [9] Yan Wang, Tingting Zhao, Jun Liu . Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays. Mathematical Biosciences and Engineering, 2019, 16(6): 7126-7154. doi: 10.3934/mbe.2019358
    [10] Noura Laksaci, Ahmed Boudaoui, Seham Mahyoub Al-Mekhlafi, Abdon Atangana . Mathematical analysis and numerical simulation for fractal-fractional cancer model. Mathematical Biosciences and Engineering, 2023, 20(10): 18083-18103. doi: 10.3934/mbe.2023803
  • In this paper, the global complexities of a stochastic virus transmission framework featuring adaptive response and Holling type II estimation are examined via the non-local fractal-fractional derivative operator in the Atangana-Baleanu perspective. Furthermore, we determine the existence-uniqueness of positivity of the appropriate solutions. Ergodicity and stationary distribution of non-negative solutions are carried out. Besides that, the infection progresses in the sense of randomization as a consequence of the response fluctuating within the predictive case's equilibria. Additionally, the extinction criteria have been established. To understand the reliability of the findings, simulation studies utilizing the fractal-fractional dynamics of the synthesized trajectory under the Atangana-Baleanu-Caputo derivative incorporating fractional-order α and fractal-dimension have also been addressed. The strength of white noise is significant in the treatment of viral pathogens. The persistence of a stationary distribution can be maintained by white noise of sufficient concentration, whereas the eradication of the infection is aided by white noise of high concentration.



    Diverse viral outbreaks, including those engendered by the human immune compromised virus (HIV) [1], ebola virus [2], acute respiratory syndrome Coronavirus‐2 (SARS‐CoV‐2) [3], dengue virus [4], nipah virus [5], HBV [6], etc., have been researched utilizing mathematical formulas to describe the within-host nonlinear versatile tendencies. In typical latent infection systems, uncontrolled infections, vulnerable tissues, and attacked cellular responses interact. Additionally, several researchers highlight the phenomenon of incubation by mentioning persistent contamination. The recipient defensive mechanism responds to viral infestation via inherent and monoclonal antibody immunogenicity. Both kinds of reactions can be roughly classified into lytic and nonlytic parts. While nonlytic responder processes prevent viremia by aqueous molecules, lytic responder strategies eliminate afflicted organisms. Innate mechanisms include the ability of autonomous assassin systems to destroy intracellular pathogens and the nonlytic inhibition of viral multiplication by cytokines released by cellular functions. Cytotoxic T lymphocytes (CTLs), which are allergen antibodies, destroy intracellular pathogens while autoantibodies deactivate dispersed viral proteins and prevent the transmission of bacteria to infected macrophages. Furthermore, CD4+ and CD8+ T lymphocytes can produce chemicals that inhibit infectious proliferation (e.g., IFN- and TNF-), (see Figure 1).

    Figure 1.  Life cycle of CD4+ and CD8+ T cells.

    These discrepancies are not necessarily easy to make, though. For instance, cytokines like interferon and tumour necrotic signal have been shown to promote apoptosis in some circumstances, in addition to inhibiting infectious multiplication [7]. Eichelberger et al. [8] investigated whether the pathogen can be eradicated by the CD4+ T-cell-dependent antigen reaction in the absence of CD8+ T cells, (see Figure 2). Topham et al. [9] demonstrated that CD8+ T lymphocytes can eliminate the pathogen by a lytic process that is either regulated by complement activation or Fas. In terms of explaining the four distinct HCV scenarios quantitatively, Pan et al. [10] addressed the HCV infectious system, which incorporates the pathways of contamination and propagation, such as infectious agent and cell-to-cell dissemination patterns.

    Figure 2.  Aging and respiratory viral infection: from acute morbidity to chronic.

    Chronic infestations result when the pathogen weakens and suppresses the innate immunity. An immunological reaction has occurred whereby, upon a bacteria's penetration into the system, the immunological mechanism identifies the onslaught and communicates this information to the defensive components, which then generate lymphocytes to eradicate the infection. Additionally, the responsive immunological mechanism is very important in regulating the virus replication. When an infection propagates in a person, the cells respond in two ways: first, a host antibody immune reaction is triggered by the B-cell, and then a cytotoxic immunological reaction is induced by the Cytotoxic T Lymphocyte (CTL). According to earlier investigations, the autoimmune disease seems to be more robust than the intracellular immunological defences. Elaiw et al. [11] addressed the production of antibodies, particular nonlinear prevalence rate expression, and behavioural features of viral transmission scenarios, including insidiously viral particles. Luo et al. [12] analyzed a nonlinear prevalence, cell-to-cell dissemination, and host immune protection framework for diffusive pathogen infectious diseases. Wang et al. [13] investigated the infectious patterns of a system of persistent HIV transmission that included multiple latencies, B-cell immunological responses, and the Beddington-DeAngelis occurrence criterion. Hattaf [14] presented a generalised virus-induced framework with several delayed and immune regulatory components that exhibit global stability and Hopf bifurcation. Rajivganthi and Rihan [15] presented the stochastic analysis of viral infection model involving latently infected cells. Olaide et al. [16] presented a novel metaheuristic algorithm named ebola optimization search algorithm (EOSA) based on the propagation mechanism of the ebola virus disease. For further investigations on optimization and epidemics, we refer the readers [17,18,19,20,21,22,23,24,25].

    Fractional calculus (FC) is a subfield of mathematics that was created by applying integer derivatives to differential equations (DEs) involving fractional-orders [26,27,28,29,30,31]. Since many considerable anomalies in digital circuits, phonics, physio-chemical processes, special relativity, photo-catalysis, transport phenomena, stretchability, and optoelectronics can be characterized by fractional DEs, this field, which deals with classical derivatives and fractional-order, has gained popularity in the last three decades. Additionally, FC is currently an essential strategy for simulating complicated events as well as electron mobility that occurs in permeable heterogeneity environments [32,33,34,35,36]. In order to analyze FDEs, scientists require a powerful toolset, yet it might be challenging to identify precise alternatives to these kinds of computations. Therefore, it is vital to designing appropriate quantitative strategies to address these issues [37]. However, quantitative approaches for FDEs create mathematical challenges that are not present in the evaluation of integer-order models. Because certain of the advantageous aspects of the conventional approximation operators are compromised, there are certain systemic problems in performing simulations of the fractional derivatives. During the last decade, the Atangana-Baleanu fractional operator has made recent advancements in fractional DEs approximation, [38]. Atangana [39] proposed a revolutionary nonlocal formulation that combines fractional-order and fractal-dimension: fractal-fractional (FF) differential and integral operators. To examine intricate real-world situations that can never be modelled using classical and fractional derivative/integral formulations of single order, the F-F technique has been expounded as a valuable technique in numerous scientific and epidemiological fields. Versaci et al. [40] presented a fuzzy similarity-based approach to classify numerically simulated and experimentally detected carbon fiber-reinforced polymer plate defects. The present scheme can be further formulated with the method proposed by [40].

    However, the fractional-order and integer-order mathematical models have been developed to analyze a large number of randomized order derivatives, providing an additional level of flexibility in selecting; see [41,42,43,44]. The stochastic DEs might offer a significant level of reliability, and when linked to deterministic systems, they encompass the comprehensive spectra of an individual cohort and produce a highly precise result as compared to a classical model. We need to execute the simulations repeatedly and detect commonalities in the projected scenarios because the results of every inquiry in a stochastic procedure differ from the preceding [46,47,48]. According to several researchers, a non-linear recurrence projection for stochastic processes is one of the epidemiological techniques that has been examined for stability evaluation. In fact, random events are prevalent worldwide. Systems frequently experience random disturbances. Various studies have been conducted on stochastic dynamics; for example, a wide range of scientific theories, including meteorology, accounting, biology, and telecommunication systems, frequently exhibit randomized fluctuations with long-term dependency. In order to analyze fractional stochastic processes, fractional Brownian motion (BM) employing the Hurst index H(1/2,1) has been proposed as an alternative to classical BM [49]. Kerboua et al. [50] looked into stochastic fractional DEs with perturbed regulatory frameworks that involved fractional BM. Pei and Xu [51] investigated the non-Lipschitz stochastic DEs driven by fractional BM. In 2021, authors [52] presented a novel notion for analyzing and predicting the transmission of COVID-19 throughout Africa and Europe using stochastic and deterministic methods. Alkahtani and Koca [53] contemplated the fractional stochastic SIR system within the fractional calculus technique. Rashid et al. [54] contemplated the stochastic fractal-fractional tuberculosis model via a non-singular kernel with random densities.

    Owing to the aforesaid propensity, we intend to suggest a novel fractal-fractional stochastic immune effector response to viral infections while taking the notion of a fluctuating population with white noise into consideration. We intend to divide the entire population into five distinct groups based on the severity of viral infection. Furthermore, several qualitative analyses are conducted, such as the existence and distinctiveness of the positive solution in the stochastic immune effector responses considering a Holling type II functionality reaction. Perceptions from these systems are distilled in this assessment, which also contrasts them with test findings. Numerical results are presented by employing the revolutionary technique proposed by Atangana and Araz [52] in the fractal-fractional derivative sense. Graphical illustrations are presented with low random densities, incorporating the fractal-dimension and fractional-order. In a nutshell, we presented the simulation findings with and without control.

    The rest of this paper is structured as follows. Section 2 gives some foundational information on F-F operators in the ABC sense, formulations of stochastic perturbation and the fractional viral infection model construction. In Section 3, we demonstrate the model's configuration. Section 4 exhibits the solution's existence-uniqueness, as well as ergodicity and conducts a stationary distribution study on the proposed model. The unique result for the F-F viral model is established utilizing the Atangana-Baleanu sense and standard Brownian motion in Section 5. Furthermore, the discussion of numerical simulations utilizing the novel numerical scheme is provided to analyze the behaviors of the considered model. Finally, we give the conclusion of our paper in the last section.

    Before advancing on to the formal description, it is imperative to study certain fundamental F-F operator concepts. Take into account the parameters provided in [39] as well as the functional v(t1), which is continuous and fractal differentiable on [c,d] with fractal-dimension and fractional-order α.

    Definition 2.1. ([39]) The FF operator of v(ˉt) involving the index law kernel in the perspective of Riemann–Liouville (RL) can be described as follows for ˉt[0,1]:

    FFPDα,0,ˉt(v(ˉt))=1Γ(uα)ddˉtˉt0(ˉtw)uα1v(w)dw, (2.1)

    where dv(w)dw=limˉtϰv(ˉt)v(ϰ)ˉtϰ and u1<α,uN.

    Definition 2.2. ([39]) The FF operator of v(ˉt) involving the exponential decay kernel in the terms of RL can be described as follows for α[0,1]:

    FFEDα,0,ˉt(v(ˉt))=M(α)1αddˉtˉt0exp(α1α(ˉtϰ))v(ϰ)dϰ, (2.2)

    such that M(0)=M(1)=1 containing α>0,uN.

    Definition 2.3. ([39]) The FF operator of v(ˉt) involving the generalized Mittag-Leffler kernel in the perspective of RL can be described as follows for α[0,1]:

    FFMDα,0,ˉt(v(ˉt))=ABC(α)1αddˉtˉt0Eα(α1α(ˉtϰ))v(ϰ)dϰ, (2.3)

    such that ABC(α)=1α+αΓ(α) involving α>0,1N.

    Definition 2.4. ([39]) The corresponding F-F integral formulae of (2.1) is described as:

    FFPJα0,ˉt(v(ˉt))=Γ(α)ˉt0(ˉtϰ)α1ϰ1v(ϰ)dϰ. (2.4)

    Definition 2.5. ([39]) The corresponding F-F integral formulae of (2.2) is described as:

    FFEJα0,ˉt(v(ˉt))=αM(α)ˉt0ϰ1v(ϰ)dϰ+(1α)ˉt1v(ˉt)M(α). (2.5)

    Definition 2.6. ([39]) The corresponding F-F integral formulae of (2.3) is described as:

    FFMJα0,ˉt(v(ˉt))=αABC(α)ˉt0ϰ1(ˉtϰ)α1v(ϰ)dϰ+(1α)ˉt1v(ˉt)ABC(α). (2.6)

    Definition 2.7. ([38]) Let vH1(c,d),c<d and the Atangana-Baleanu fractional derivative operator is described as:

    ABCcDαˉt(v(ˉt))=ABC(α)1αˉtcv(ϰ)Eα(α(ˉtϰ)α1α)dϰ,α[0,1], (2.7)

    where ABC(α) represents the normalization function.

    Definition 2.8. ([55]) The Gaussian hypergeometric function 2F1, characterized as

    2F1(y1,y2;y3,y4)=1B(y2,y3y2)11ˉty21(1ˉt)y3y21(1y4ˉt)y1dˉt,(y3>y2>0,|y1|<1), (2.8)

    where B(y1,y2)=Γ(y1)Γ(y2)Γ(y1+y2) and Γ(y1)=0exp(ˉt)ˉty1dˉt is the Gamma function.

    Here, the immunological mechanism is necessary for the highly contagious viral replication. If infectious processes are adequately described, the infection and the therapeutic medications employed to address it can be comprehended. Lymphocytes are vicariously liable for specialization and retention in responsive immunological systems. B cells and T cells are the two primary categories of lymphocytes. T cells have the ability to identify and eliminate contaminated organisms, whereas B cells are responsible for producing antigens that can neutralize pathogens. Immune systems, including CTL and antigen-response, have been examined in terms of their impact [56,57]. The impact of CTL reactions and cytoplasmic latencies has been considered by a few other scientists as well [58]. Murase et al. [59] presented the mathematical framework that shows how adaptive immunity affects viral transmission as follows:

    {U(ˉt)dˉt=ΛςU(ˉt)λ11U(ˉt)F(ˉt)λ22U(ˉt)A(ˉt),A(ˉt)dˉt=λ1U(ˉt)F(ˉt)+λ2U(ˉt)A(ˉt)δA(ˉt),F(ˉt)dˉt=φA(ˉt)ν2F(ˉt)ξF(ˉt)Q(ˉt),Q(ˉt)dˉt=χF(ˉt)Q(ˉt)ζQ(ˉt)A(ˉt)δA(ˉt), (3.1)

    The system (3.1) based on unrestricted infections F(ˉt), unaffected target cells U(ˉt), productively infectious specific cells A(ˉt) and antibodies/B tissue Q(ˉt). The productivity Λ of the infectious organisms U(ˉt) and fatality rate ς are both constant. The incidence of the disease by uncontrolled pathogen is λ11, and uncontrolled bacteria become constructively contaminated at a rate of λ22 for each of the two individuals. The percentage of viral components that died at δ,ν2 and ζ released pathogens, antibodies, and B tissues, respectively. When tissues are actively infested, individual viral particles are created at a speed of φ, where is the ratio ξ at which responses can eliminate the pathogen. The frequency of responses that are active versus the pathogen is χ.

    However, the persistent infectious factor is applied to framework (3.1) in this article as an improvement. We suppose that the incidence at which a Holling type II functioning reaction develops is that the unaffected cell U(ˉt) becomes contaminated by a neutral pathogen F(ˉt) or by virus is transmitted organism A(ˉt) at the rate λ1U(ˉt)F(ˉt)1+F(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt) response. The rates of pathogen to tissue infection and tissue to cell propagation are indicated by λ1>0 and λ2>0,, respectively, see [60]. We further estimate that the amounts of contamination that result in response times and efficiency are 1ϕ and ϕ(0,1), respectively. In addition, we included the effect of unpredictability within the host by injecting nonlinear disturbances on the spontaneous mortality rate, employing white noise throughout each expression in an attempt to depict a more accurate state of pathogen progression. As a result, the modified framework is specified:

    {dU(ˉt)=(ΛςU(ˉt)λ1U(ˉt)S(ˉt)1+S(ˉt)λ2U(ˉt)A(ˉt)1+A(ˉt))dˉt+ρ1U(ˉt)dB1(ˉt),dS(ˉt)=((1ϕ)(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))(ν1+σ)S(ˉt))dˉt+ρ2S(ˉt)dB2(ˉt),dA(ˉt)=(ϕ(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))+σS(ˉt)δA(ˉt))dˉt+ρ3A(ˉt)dB3(ˉt),dF(ˉt)=(φA(ˉt)ν2F(ˉt)ξF(ˉt)Q(ˉt))dˉt+ρ4F(ˉt)dB4(ˉt),dQ(ˉt)=(χF(ˉt)Q(ˉt)ζQ(ˉt))dˉt+ρ5Q(ˉt)dB5(ˉt), (3.2)

    subject to initial conditions (ICs) U(0)>0,S(0)>0,A(0)>0,F(0)>0,Q(0)>0. Moreover, the term S(ˉt) stands for the concentrations of contaminated tissues in the predictive phase at time ˉt. ν1 be the death rate of S(ˉt), the underlying contamination becomes prolific at the rate σ. Also, ρ2ι,ι=1,...,5 are intensities of standard Gaussian white noise and Bι,ι=1,...,5 are independent standard Brownian motion (BM). The underlying ideas of probability theory and stochastic differential equations are described as: let (Ω,F,{F}ˉt0,P) be a complete probability space using filtration such that {F}ˉt0 admits the basic requirements. For further information on Itô's technique, see [61]. However, the deterministic model has certain limitations because it cannot consider demographic stochasticity, which are important features of any natural system. Due to the influence of environmental noise, population density usually does not stabilize at a fixed value, but fluctuates around a certain average value. Nowadays, stochastic biological modeling has attracted great interest from researchers all over the world [20,21,22].

    In what follows, we provide the accompanying result to identify the stochastic model's (3.2) existence and uniqueness.

    Theorem 4.1. For χ<ξ<ζ,λ1φ<ν2+χ,1+λ2<δφ, the solution of the system (3.2)  (U(0),S(0),A(0),F(0),Q(0)) is unique for ˉt0 underlying ICs (U(0),S(0),A(0),F(0),Q(0))R5+. Also, the solution will probably stay in R5+ having unit probability, i, e., (U(0),S(0),A(0),F(0),Q(0))R5+,ˉt>0 almost surely (a.s).

    Proof. Briefly, if the local Lipschitz criterion is fulfilled by the components of the scheme (3.2). Thus, (3.2) has an unique local solution (U(ˉt),S(ˉt),A(ˉt),F(ˉt),Q(ˉt)) on [0,τe], where τe is the exposition duration. Then, we illustrate that τe=. Let us apply the same methodology used in [48] to prove the result. Our intention is to define a non-negative mapping C2 as H:R5+R+ such that limη(U(ˉt),S(ˉt),A(ˉt),F(ˉt),Q(ˉt))R5+ΥηinfH(U,S,A,F,Q)= and LH(U,S,A,F,Q)k, where Υη=(1/η,η)×(1/η,η)×(1/η,η)×(1/η,η)×(1/η,η) and k is non-negative constant.

    Now, considering two positive constants values ϵ from (0,1) and T must exist such that

    P[Tτ]>ϵ. (4.1)

    Introducing a mapping H:R5+R+ as:

    H(U,S,A,F,Q)=U+S+A+F+Q5(lnU+lnS+lnA+lnF+lnQ). (4.2)

    This stored procedure non-negativity is shown by examining at ϱ1lnϱ,ϱ>0. Suppose that k0k and T>0. The Itô's formula can be used to acquire

    dH(U,S,A,F,Q)=LH(U,S,A,F,Q)dˉt+ρ1(U1)dB1(ˉt)+ρ2(S1)dB2(ˉt)+ρ3(A1)dB3(ˉt)+ρ4(F1)dB4(ˉt)+ρ5(Q1)dB5(ˉt). (4.3)

    It follows that

    LH(U,S,A,F,Q)=(11U)(ΛςU(ˉt)λ1U(ˉt)S(ˉt)1+S(ˉt)λ2U(ˉt)A(ˉt)1+A(ˉt))+(11S)((1ϕ)(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))(ν1+σ)S(ˉt))+(11A)(ϕ(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))+(11F)(φA(ˉt)ν2F(ˉt)ξF(ˉt)Q(ˉt))+(11Q)(χF(ˉt)Q(ˉt)ζQ(ˉt))12(ρ21+ρ22+ρ23+ρ24+ρ25)+Λ+ς+ν1+σ1+δ+ν2+ζ+((ξζ)+(χξ)F)Q+(λφ(ν2+χ))F+((λ2+1)φδ)A. (4.4)

    Utilizing the given hypothesis, there exists a non-negative constant η such that LH<η.

    Therefore,

    U[H(U(τηT),S(τηT),A(τηT),F(τηT),Q(τηT))]H(U(0),S(0),A(0),F(0),Q(0))+U[τηT0ηdˉt]H(U(0),S(0),A(0),F(0),Q(0))+ηT. (4.5)

    Inserting Ωη={τηT} for ηη1 and by (4.1) we have P(Ωη)ϵ. Observe that for every ω from Ωη there exist at least one U(τη,ω),S(τη,ω),A(τη,ω),F(τη,ω),Q(τη,ω) that yields 1/ηorη. Consequently, H(U(τη),S(τη),A(τη),F(τη),Q(τη))(1/η1+lnη)U(η1lnη).

    In view of (4.1) and (4.5), we can express

    H(U(0),S(0),A(0),F(0),Q(0))+ηTU[1Ω(ω)H(U(τη),S(τη),A(τη),F(τη),Q(τη))]ϵ(1/η1+lnη)U(η1lnη). (4.6)

    The indicating mapping of ω is denoted as 1Ω(ω) that approaches to , the contradiction

    >H(U(0),S(0),A(0),F(0),Q(0))+ηT=

    reveals itself, proving that τ=.

    Now, we review and examine the model's (3.2) stationary distribution outcomes, which show that the infections are eliminated or enduring.

    Suppose there be a regular Markov technique in Rn+ for which the behaviour is as below:

    dΦ(ˉt)=b1(Φ)dˉt+ur1ζr1dΨr1(ˉt).

    The diffusion matrix takes the form

    A(Φ)=[aij(ϕ)],aij(ϕ)=ur1=1ζir1(ϕ)ζr1j(ϕ).

    Lemma 4.1. ([62]) Suppose there is a unique stationary distribution technique Φ(ˉt). If there is a bounded region involving regular boundary such that S,ˉSRdˉS closure ˉSRd satisfies the following:

    (a) The smallest eigenvalue for A(ˉt) is bounded away from (0,0) for the open region S having neighbourhood.

    (b) For ψRdS, the mean time τ is bounded and for every compact subset KRn,supψkSψτ<. Therefore, f1(.) is an integrable mapping containing measure π, then

    P(limT1TT0f1(Φψ(ˉt))dˉt=Rdf1(ψ)π(dψ))=1,ψRd.

    Theorem 4.2. For ˆσ=ν1+σ+ρ222,ˆδ=δ+ρ232,^ν2=ν2+ρ242, then assume that Rs0:=Λσφλ1(1ϕ)ςˆδˆσ>1, then for any ICs exists in R5+, the system has a unique ESD π(.).

    Proof. The diffusive matrix for system (3.2) is computed as follows:

    A=[ρ21U200000ρ22S200000ρ23A200000ρ24F200000ρ25U2].

    This proves that the criteria (a) in Lemma 4.1 is applicable for any compact subset of R5+. In view of mapping C2 defined as H:R5+R+. Thus, we have

    H(U,S,A,F,Q):=M(ln1U+1ln1S+2ln1A+3ln1F+ln1Q)+ln1U+ln1S+ln1A+ln1F+(U+S+A+F+Q)θ+1θ+1=MH1+H2+H3+H4+H5+H6,

    where θ[0,1],1=Λλ1σφ(1ϕ)ˆσ2ˆa^ν2,2=Λλ1σφ(1ϕ)ˆσ2ˆa2^ν2,3=Λλ1σφˆσˆa^ν22 fulfilling cθ2(ρ21ρ22ρ23ρ24ρ25)>0 and M>0, admitting the assumption Mν2+N12 and ν2=ς(Rs01)>0.

    This shows that H(U,S,A,F,Q) is continuous as well as it tends to . So that (U,S,A,F,Q) approaches to R5+ and (U,S,A,F,Q). Also, H have ICs that lies in R5+.

    Again, in view of mapping C2 defined as H:R5+R+. Thus, we have

    ˉH(U,S,A,F,Q)=HU,S,A,F,QH(U(0),S(0),A(0),F(0),Q(0)).

    Considering Itô's technique L on the mappings H1,...,H6 and utilizing the given hypothesis such that c=max{ς,ν1,δ,ν2,ζ}, we have

    LH1ΛU1S(1ϕ)λ1UFσ2SAφA3F+ς+λ2A+1(ν1+σ)+δ2+ν23+ξQ3(χλ1)F+ζ+12(ρ21+1ρ22+2ρ23+3ρ24+ρ24)F+ρ212+ζ+ρ25+λ2A+ξ3Q. (4.7)

    Analogously, we have

    LH2ΛU+ς+λ1F+λ2A+ρ212,LH3=1S(1ϕ)(λ1UF1+F+λ2UA1+A)+ν1+σ+ρ222,LH4=ϕλ1UFA(1+F)ϕλ2U1+AσSA+δ+ρ232,LH5=φAF+ν2+ξQ+ρ242,LH5N212(c1θ2(ρ21ρ22ρ23ρ24ρ25))(Uθ+1,Sθ+1,Aθ+1,Fθ+1,Qθ+1), (4.8)

    where N2=sup(U,S,A,F,Q)R5+{Λ(U+S+A+F+Q)θ12(c1θ2(ρ21ρ22ρ23ρ24ρ25))(U+S+A+F+Q)θ+1}<.

    Utilizing (4.7) and (4.8), we have

    LˉHΛUMF+(M3+1)ξQ1S(1ϕ)λ1UFϕλ2U1+AφAF12(c1θ2(ρ21ρ22ρ23ρ24ρ25))(Uϑ+1+Sϑ+1+Aϑ+1+Fϑ+1+Qϑ+1)+ς+(M+1)ρ212+Mζ+Mρ252+(M+1)λ2A+δ+ν2+λ1F+N2+ν1+σ+ρ222+ρ232+ρ242. (4.9)

    For ϵ>0, we construct the following set

    D={(U,S,A,F,Q)R5+:U[ϵ,1/ϵ],S[ϵ5,1/ϵ5],A[ϵ2,1/ϵ2],F[ϵ3,1/ϵ3],Q[ϵ,1/ϵ]}. (4.10)

    We can validate Lemma 4.1 in order to demonstrate that LˉH1 for (U,S,A,F,Q)R5+DandR5+D=10ι=1Dι, where

    D1={(U,S,A,F,Q)R5+:U(0,ϵ)},D2={(U,S,A,F,Q)R5+:A(0,ϵ5),Uϵ,Fϵ3},D3={(U,S,A,F,Q)R5+:A(0,ϵ2),Uϵ},D4={(U,S,A,F,Q)R5+:F(0,ϵ3),Aϵ2},D5={(U,S,A,F,Q)R5+:Q(0,ϵ)},D6={(U,S,A,F,Q)R5+:U>1/ϵ},D7={(U,S,A,F,Q)R5+:S>1/ϵ5},D8={(U,S,A,F,Q)R5+:A>1/ϵ2},D9={(U,S,A,F,Q)R5+:F>1/ϵ3},D10={(U,S,A,F,Q)R5+:Q>1/ϵ}. (4.11)

    Case (a) If (U,S,A,F,Q)D1, then by (4.9), we find

    LˉHΛU+(M3+1)ξQ14(c1θ2(ρ21ρ22ρ23ρ24ρ25))(Uϑ+1+Sϑ+1+Aϑ+1+Fϑ+1+Qϑ+1)+ς+(M+1)ρ212+Mζ+Mρ252+(M+1)λ2A+δ+ν2+λ1F+N2+ν1+σ+ρ222+ρ232+ρ242Λϵ+M1 (4.12)

    If we choose a sufficiently small ϵ>0, then we get LˉH<0 for each (U,S,A,F,Q)D1.

    Case (b) If (U,S,A,F,Q)D2, then by (4.9), we find

    LˉH1S(1ϕ)λ1UF+M11ϵ(1ϕ)λ1+M1

    If we choose a sufficiently small ϵ5>0, then we get LˉH<0 for each (U,S,A,F,Q)D2.

    Case (c) If (U,S,A,F,Q)D3, then by (4.9), we find

    LˉHϕλ2U1+A+M1ϕλ2ϵ1+ϵ2+M1.

    If we choose a sufficiently small ϵ2>0, then we get LˉH<0 for each (U,S,A,F,Q)D3.

    Case (d) If (U,S,A,F,Q)D4, then by (4.9), we find

    LˉHφAF+M1φϵ+M1.

    If we choose a sufficiently small ϵ>0, then we get LˉH<0 for each (U,S,A,F,Q)D4.

    Case (e) If (U,S,A,F,Q)D5, then by (4.9), we find

    LˉHMF+(M3+1)ξQ+N1MF+(M3+1)ξϵ+N1.

    If we choose a sufficiently small ϵ>0, then we get LˉH<0 for each (U,S,A,F,Q)D4.

    Case (f) If (U,S,A,F,Q)D6, then by (4.9), we find

    LˉH14(c1θ2(ρ21ρ22ρ23ρ24ρ25))(U)θ+1+M114(c1θ2(ρ21ρ22ρ23ρ24ρ25))1ϵ(θ+1)+M1.

    If we choose a sufficiently small ϵ>0, then we get LˉH<0 for each (U,S,A,F,Q)D6.

    Case (g) If (U,S,A,F,Q)D7, then by (4.9), we find

    LˉH14(c1θ2(ρ21ρ22ρ23ρ24ρ25))(S)θ+1+M114(c1θ2(ρ21ρ22ρ23ρ24ρ25))1ϵ5(θ+1)+M1.

    If we choose a sufficiently small 1/ϵ5>0, then we get LˉH<0 for each (U,S,A,F,Q)D7.

    Case (h) If (U,S,A,F,Q)D8, then by (4.9), we find

    LˉH14(c1θ2(ρ21ρ22ρ23ρ24ρ25))(A)θ+1+M114(c1θ2(ρ21ρ22ρ23ρ24ρ25))1ϵ2(θ+1)+M1.

    If we choose a sufficiently small 1/ϵ2>0, then we get LˉH<0 for each (U,S,A,F,Q)D8.

    Case (i) If (U,S,A,F,Q)D9, then by (4.9), we find

    LˉH14(c1θ2(ρ21ρ22ρ23ρ24ρ25))(F)θ+1+M114(c1θ2(ρ21ρ22ρ23ρ24ρ25))1ϵ3(θ+1)+M1.

    If we choose a sufficiently small 1/ϵ3>0, then we get LˉH<0 for each (U,S,A,F,Q)D9.

    Case (j) If (U,S,A,F,Q)D10, then by (4.9), we find

    LˉH14(c1θ2(ρ21ρ22ρ23ρ24ρ25))(Q)θ+1+M114(c1θ2(ρ21ρ22ρ23ρ24ρ25))1ϵ(θ+1)+M1.

    If we choose a sufficiently small 1/ϵ>0, then we get LˉH<0 for each (U,S,A,F,Q)D10.\\As a result of the foregoing explanation, a ϵ>0 exists such that LˉH(U,S,A,F,Q)<0 (U,S,A,F,Q)R5+. The unique ESD of the system (3.2) is predicated on Lemma 4.1. This completes the proof.

    This part defines the objectives for a virus's systemic elimination (3.1). Before proving the key findings, let's take a closer look at a key premise. Suppose

    Φ(ˉt)=1ˉtˉt0ϕ(r1)dr1. (4.13)

    Theorem 4.3. Suppose there is a solution of the system (3.1)  (U(ˉt),S(ˉt),A(ˉt),F(ˉt),Q(ˉt)) having ICs lies in R5+. If

    ˜Rs0:=3(λ1+λ2)Λς((ν1+ρ222)((δφ)+ρ232)(ν2+ρ242))<1
    limˉt1ˉtˉt0U(ϖ)dϖΛς,limˉtS(ˉt)=0,limˉtA(ˉt)=0,limˉtF(ˉt)=0

    almost surely.

    Proof. Under the hypothesis of Theorem 4.1, model (3.2) has non-negative solution,

    dU(ˉt)(ΛςU)dˉt+ρ1UdB1(ˉt).

    Assume the stochastic DE of the aforementioned system

    dU1(ˉt)(ΛςU1)dˉt+ρ1U1dB1(ˉt),U1(0)=U(0)>0,

    we have limˉt1ˉtˉt0U(ϖ)dϖΛς(a.s).

    Applying the result of [48], gives U(ˉt)U1(ˉt)(a.s). Then

    limˉt1ˉtˉt0U(ϖ)dϖlimˉt1ˉtˉt0U1(ϖ)dϖ=Λς(a.s).

    For φ<δ and introducing ln(S(ˉt)+A(ˉt)+F(ˉt)) and implement the Itô's technique, we have

    d(ln(S(ˉt)+A(ˉt)+F(ˉt)))=1S(ˉt)+A(ˉt)+F(ˉt)(λ1UF1+F+λ2UA1+Aν1S(δφ)Aν2FξFQ)dˉt+ρ2SS+A+FdB2(ˉt)+ρ3AS+A+FdB3(ˉt)+ρ4FS+A+FdB2(ˉt)12(S+A+F)2(ρ22S2+ρ23A2+ρ24F2)dˉtρ2SS+A+FdB2(ˉt)+ρ3AS+A+FdB3(ˉt)+ρ4FS+A+FdB2(ˉt)+(λ1+λ2)Udˉt13(((ν1+ρ222)((δφ)+ρ232)(ν2+ρ242)))dˉt. (4.14)

    Applying integration from 0 to ˉt and dividing by ˉt, we have

    ln(S(ˉt)+A(ˉt)+F(ˉt))ˉtln(S(0)+A(0)+F(0))ˉtλ1+λ2ˉtˉt0U(ϱ)dϱ13(((ν1+ρ222)((δφ)+ρ232)(ν2+ρ242)))+ρ2ˉtˉt0dB2(ϱ)S+A+F+ρ3ˉtˉt0dB3(ϱ)S+A+F+ρ4ˉtˉt0dB4(ϱ)S+A+F13(((ν1+ρ222)((δφ)+ρ232)(ν2+ρ242)))(˜Rs01)<0(a.s)

    that yields limˉtS(ˉt)=0,limˉtA(ˉt)=0,limˉtF(ˉt)(a.s).

    The modeling framework helps us understand and interpret experimental data on immune responses against viral infection model (5.1). The role of the fractal-fractional operator in the Atangana-Baleanu fractional derivative sense and antibodies for the resolution of viral infection is debated by utilizing the scheme proposed in [52]. Studies of the acute phase of the infection showed that humans who cleared the virus from their blood developed strong and sustained CTL responses [57]. Here, we illustrate the fractal-fractional derivative for the classical derivative formulation stated in (3.1). The fractal-fractional version in the sense of a generalized Mittag-Leffler function is described as

    {FFM0Dα,ˉtU(ˉt)=(ΛςU(ˉt)λ1U(ˉt)S(ˉt)1+S(ˉt)λ2U(ˉt)A(ˉt)1+A(t1))dt1+ρ1G1(t1,U)dB1(ˉt),FFM0Dα,ˉtS(ˉt)=((1ϕ)(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))(ν1+σ)S(ˉt))dˉt+ρ2G2(ˉt,S)dB2(ˉt),FFM0Dα,ˉtA(ˉt)=(ϕ(λ1U(ˉt)S(ˉt)1+S(ˉt)+λ2U(ˉt)A(ˉt)1+A(ˉt))+σS(ˉt)δA(ˉt))dˉt+ρ3G3(ˉt,A)dB3(ˉt),FFM0Dα,ˉtF(ˉt)=(φA(ˉt)ν2F(ˉt)ξF(ˉt)Q(ˉt))dˉt+ρ4G4(ˉt,F)dB4(ˉt),FFM0Dα,ˉtQ(ˉt)=(χF(ˉt)Q(ˉt)ζQ(ˉt))dˉt+ρ5G5(ˉt,Q)dB5(ˉt). (5.1)

    For tn+1=(n+1)Δˉt, then we transform these mappings by their polynomials as follows:

    Un+1=U0+(1α)ABC(α)ˉt1n+1[{U(ˉtn+1,Upn+1,Apn+1,Fpn+1)+ρ1G1(ˉtn+1,Upn+1)(B1(ˉtn+2)B1(ˉtn+1))]+αABC(α)Γ(α)n1κ=0[{U(ˉtκ+1,Uκ+1,Aκ+1,Fκ+1)Jα,1,κ+U(ˉtκ+1,Uκ+1,Aκ+1,Fκ+1)U(ˉtκ,Uκ,Aκ,Fκ)Jα,2,κ+U(ˉtκ+1,Uκ+1,Aκ+1,Fκ+1)2U(ˉtκ,Uκ,Aκ,Fκ)+U(ˉtκ1,Uκ1,Aκ1,Fκ1)Jα,3,κ]
    +αABC(α)Γ(α)n1κ=0[{ρ1G1(ˉtκ+1,Uκ+1)(B1(ˉtκ+1)B1(ˉtκ))Jα,1,κ+{ρ1G1(ˉtκ+1,Uκ+1)(B1(ˉtκ+1)B1(ˉtκ))ρ1G1(ˉtκ,Uκ)(B1(ˉtκ)B1(ˉtκ1))}Jα,2,κ+{ρ1G1(ˉtκ+1,Uκ+1)(B1(ˉtκ+1)B1(ˉtκ))2ρ1G1(ˉtκ,Uκ)(B1(ˉtκ)B1(ˉtκ1))ρ1G1(ˉtκ1,Uκ1)(B1(ˉtκ1)B1(ˉtκ2))}Jα,3,κ]
    +αABC(α)Γ(α)[{U(ˉtn+1,Upn+1,Apn+1,Fpn+1)Jα,1,n+U(ˉtn+1,Upn+1,Apn+1,Fpn+1)Jα,2,nU(ˉtn,Un,An,Fn)Jα,2,n+{U(ˉtn+1,Upn+1,Apn+1,Fpn+1)2U(ˉtn,Un,An,Fn)2}Jα,3,n+U(ˉtn1,Un1,An1,Fn1)22Jα,3,n+ρ1G1(ˉtn+1,Up1n+1)(B1(ˉtn+1)B1(ˉtn))Jα,1,n+ρ1G1(ˉtn+1,Up1n+1)(B1(ˉtn+1)B1(ˉtn))Jα,2,nρ1G1(ˉtn,Up1n)(B1(ˉtn)B1(ˉtn1))Jα,2,n+ρ1G1(ˉtn+1,Up1n+1)(B1(ˉtn+1)B1(ˉtn))2Jα,3,n2ρ1G1(ˉtn,Up1n)(B1(ˉtn)B1(ˉtn1))2Jα,3,n+ρ1G1(ˉtn1,Up1n1)(B1(ˉtn2)B1(ˉtn2))2Jα,3,n],
    Sn+1=S0+(1α)ABC(α)ˉt1n+1[{S(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)+ρ2G2(ˉtn+1,Spn+1)(B2(ˉtn+2)B2(ˉtn+1))]
    +αABC(α)Γ(α)n1κ=0[{S(ˉtκ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1)Jα,1,κ+S(ˉtκ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1)S(ˉtκ,Uκ,Sκ,Aκ,Fκ)Jα,2,κ+(S(ˉtκ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1)2S(ˉtκ,Uκ,Sκ,Aκ,Fκ)+S(ˉtκ1,Uκ1,Sκ1,Aκ1,Fκ1))Jα,3,κ]
    +αABC(α)Γ(α)n1κ=0[{ρ2G2(ˉtκ+1,Sκ+1)(B2(ˉtκ+1)B2(ˉtκ))Jα,1,κ+{ρ2G2(ˉtκ+1,Sκ+1)(B2(ˉtκ+1)B2(ˉtκ))ρ2G2(ˉtκ,Sκ)(B2(ˉtκ)B2(ˉtκ1))}Jα,2,κ+{ρ2G2(ˉtκ+1,Sκ+1)(B2(ˉtκ+1)B2(ˉtκ))2ρ2G2(ˉtκ,Sκ)(B2(ˉtκ)B2(ˉtκ1))ρ2G2(ˉtκ1,Sκ1)(B2(ˉtκ1)B2(ˉtκ2))}Jα,3,κ]
    +αABC(α)Γ(α)[{S(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)Jα,1,n+S(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)Jα,2,nS(ˉtn,Un,Sn,An,Fn)Jα,2,n+{S(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)2S(ˉtn,Un,Sn,An,Fn)2}Jα,3,n+S(ˉtn1,Un1,Sn1,An1,Fn1)22Jα,3,n+ρ2G2(ˉtn+1,Sp1n+1)(B2(ˉtn+1)B2(ˉtn))Jα,1,n+ρ2G2(ˉtn+1,Sp1n+1)(B2(ˉtn+1)B2(ˉtn))Jα,2,nρ2G2(ˉtn,Sp1n)(B2(ˉtn)B2(ˉtn1))Jα,2,n+ρ2G2(ˉtn+1,Sp1n+1)(B2(ˉtn+1)B2(ˉtn))2Jα,3,n2ρ2G2(ˉtn,Sp1n)(B2(ˉtn)B2(ˉtn1))2Jα,3,n+ρ2G2(ˉtn1,Sp1n1)(B2(ˉtn2)B2(ˉtn2))2Jα,3,n],
    An+1=A0+(1α)ABC(α)ˉt1n+1[{A(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)+ρ3G4(ˉtn+1,Apn+1)(B3(ˉtn+2)B3(ˉtn+1))]
    +αABC(α)Γ(α)n1κ=0[{A(ˉtκ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1)Jα,1,κ+A(ˉtκ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1)A(ˉtκ,Uκ,Sκ,Aκ,Fκ)Jα,2,κ+(A(ˉtκ+1,Uκ+1,Sκ+1,Aκ+1,Fκ+1)2A(ˉtκ,Uκ,Sκ,Aκ,Fκ)+A(ˉtκ1,Uκ1,Sκ1,Aκ1,Fκ1))Jα,3,κ]
    +αABC(α)Γ(α)n1κ=0[{ρ3G3(ˉtκ+1,Aκ+1)(B3(ˉtκ+1)B3(ˉtκ))Jα,1,κ+{ρ3G3(ˉtκ+1,Aκ+1)(B3(ˉtκ+1)B3(ˉtκ))ρ3G3(ˉtκ,Aκ)(B3(ˉtκ)B3(ˉtκ1))}Jα,2,κ+{ρ3G3(ˉtκ+1,Aκ+1)(B3(ˉtκ+1)B3(ˉtκ))2ρ3G3(ˉtκ,Aκ)(B3(ˉtκ)B3(ˉtκ1))ρ3G3(ˉtκ1,Aκ1)(B3(ˉtκ1)B3(ˉtκ2))}Jα,3,κ]
    +αABC(α)Γ(α)[{A(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)Jα,1,n+A(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)Jα,2,nA(ˉtn,Un,Sn,An,Fn)Jα,2,n+{A(ˉtn+1,Upn+1,Spn+1,Apn+1,Fpn+1)2A(ˉtn,Un,Sn,An,Fn)2}Jα,3,n+A(ˉtn1,Un1,An1,Fn1)22Jα,3,n+ρ3G3(ˉtn+1,Ap1n+1)(B3(ˉtn+1)B3(ˉtn))Jα,1,n+ρ3G3(ˉtn+1,Ap1n+1)(B3(ˉtn+1)B3(ˉtn))Jα,2,nρ3G3(ˉtn,Ap1n)(B3(ˉtn)B3(ˉtn1))Jα,2,n+ρ3G3(ˉtn+1,Ap1n+1)(B3(ˉtn+1)B3(ˉtn))2Jα,3,n2ρ3G3(ˉtn,Ap1n)(B3(ˉtn)B3(ˉtn1))2Jα,3,n+ρ3G3(ˉtn1,Ap1n1)(B3(ˉtn2)B3(ˉtn2))2Jα,3,n],
    Fn+1=F0+(1α)ABC(α)ˉt1n+1[{F(ˉtn+1,Apn+1,Fpn+1,Qpn+1)+ρ4G4(ˉtn+1,Fpn+1)(B4(ˉtn+2)B4(ˉtn+1))]
    +αABC(α)Γ(α)n1κ=0[{F(ˉtκ+1,Aκ+1,Fκ+1,Qκ+1)Jα,1,κ+F(ˉtκ+1,Aκ+1,Fκ+1,Qκ+1)F(ˉtκ,Aκ,Fκ,Qκ)Jα,2,κ+F(ˉtκ+1,Aκ+1,Fκ+1,Qκ+1)2A(ˉtκ,Aκ,Fκ,Qκ)+F(ˉtκ1,Aκ1,Fκ1,Qκ1)Jα,3,κ]
    +αABC(α)Γ(α)n1κ=0[{ρ4G4(ˉtκ+1,Fκ+1)(B4(ˉtκ+1)B4(ˉtκ))Jα,1,κ+{ρ4G4(ˉtκ+1,Fκ+1)(B4(ˉtκ+1)B4(ˉtκ))ρ4G4(ˉtκ,Fκ)(B4(ˉtκ)B4(ˉtκ1))}Jα,2,κ+{ρ4G4(ˉtκ+1,Fκ+1)(B4(ˉtκ+1)B4(ˉtκ))2ρ4G4(ˉtκ,Fκ)(B4(ˉtκ)B4(ˉtκ1))ρ4G4(ˉtκ1,Fκ1)(B4(ˉtκ1)B4(ˉtκ2))}Jα,3,κ]
    +αABC(α)Γ(α)[{F(ˉtn+1,Apn+1,Fpn+1,Qpn+1)Jα,1,n+F(ˉtn+1,Apn+1,Fpn+1,Qpn+1)Jα,2,nF(ˉtn,An,Fn,Qn)Jα,2,n+{F(ˉtn+1,Apn+1,Fpn+1,Qpn+1)2F(ˉtn,An,Fn,Qn)2}Jα,3,n+F(ˉtn1,An1,Fn1,Qn1)22Jα,3,n+ρ4G4(ˉtn+1,Fp1n+1)(B4(ˉtn+1)B4(ˉtn))Jα,1,n+ρ4G4(ˉtn+1,Fp1n+1)(B4(ˉtn+1)B4(ˉtn))Jα,2,nρ4G4(ˉtn,Fp1n)(B4(ˉtn)B4(ˉtn1))Jα,2,n+ρ4G4(ˉtn+1,Fp1n+1)(B4(ˉtn+1)B4(ˉtn))2Jα,3,n2ρ4G4(ˉtn,Fp1n)(B4(ˉtn)B4(ˉtn1))2Jα,3,n+ρ4G4(ˉtn1,Fp1n1)(B4(ˉtn2)B4(ˉtn2))2Jα,3,n],
    Qn+1=Q0+(1α)ABC(α)ˉt1n+1[{Q(ˉtn+1,Fpn+1,Qpn+1)+ρ5G5(ˉtn+1,Qpn+1)(B5(ˉtn+2)B5(ˉtn+1))]
    +αABC(α)Γ(α)n1κ=0[{Q(ˉtκ+1,Fκ+1,Qκ+1)Jα,1,κ+Q(ˉtκ+1,Fκ+1,Qκ+1)Q(ˉtκ,Fκ,Qκ)Jα,2,κ+Q(ˉtκ+1,Fκ+1,Qκ+1)2Q(ˉtκ,Fκ,Qκ)+Q(ˉtκ1,Fκ1,Qκ1)Jα,3,κ]
    +αABC(α)Γ(α)n1κ=0[{ρ5G5(ˉtκ+1,Qκ+1)(B5(ˉtκ+1)B5(ˉtκ))Jα,1,κ+{ρ5G5(ˉtκ+1,Qκ+1)(B5(ˉtκ+1)B5(ˉtκ))ρ5G5(ˉtκ,Qκ)(B5(ˉtκ)B5(ˉtκ1))}Jα,2,κ+{ρ5G5(ˉtκ+1,Qκ+1)(B5(ˉtκ+1)B5(ˉtκ))2ρ5G5(ˉtκ,Qκ)(B5(ˉtκ)B5(ˉtκ1))ρ5G5(ˉtκ1,Qκ1)(B5(ˉtκ1)B5(ˉtκ2))}Jα,3,κ]
    +αABC(α)Γ(α)[{Q(ˉtn+1,Fpn+1,Qpn+1)Jα,1,n+Q(ˉtn+1,Fpn+1,Qpn+1)Jα,2,nQ(ˉtn,Fn,Qn)Jα,2,n+{Q(ˉtn+1,Fpn+1,Qpn+1)2Q(ˉtn,Fn,Qn)2}Jα,3,n+Q(ˉtn1,Fn1,Qn1)22Jα,3,n+ρ5G5(ˉtn+1,Qp1n+1)(B5(ˉtn+1)B5(ˉtn))Jα,1,n+ρ5G5(ˉtn+1,Qp1n+1)(B5(ˉtn+1)B5(ˉtn))Jα,2,nρ5G5(ˉtn,Qp1n)(B5(ˉtn)B5(ˉtn1))Jα,2,n+ρ5G5(ˉtn+1,Qp1n+1)(B5(ˉtn+1)B5(ˉtn))2Jα,3,n2ρ5G5(ˉtn,Qp1n)(B5(ˉtn)B5(ˉtn1))2Jα,3,n+ρ5G5(ˉtn1,Qp1n1)(B5(ˉtn2)B5(ˉtn2))2Jα,3,n],

    where

    Up1n+1=U0+1αABC(α)ˉt1n+1[{U(ˉtn,Un,An,Fn)+ρ1G1(ˉtn,Un)(B1(ˉtn)B1(ˉtn1))]
    +αABC(α)Γ(α)nκ=0[{U(ˉtκ,Uκ,Aκ,Fκ)Jα,1,κ+ρ1G1(ˉtκ,Uκ)(B1(ˉtκ)B1(ˉtκ1))Jα,1,κ],Sp1n+1=S0+1αABC(α)ˉt1n+1[{S(ˉtn,Un,Sn,An,Fn)+ρ2G2(ˉtn,Sn)(B2(ˉtn)B2(ˉtn1))]+αABC(α)Γ(α)nκ=0[{S(ˉtκ,Uκ,Sκ,Aκ,Fκ)Jα,1,κ+ρ2G2(ˉtκ,Sκ)(B2(ˉtκ)B2(ˉtκ1))Jα,1,κ],
    Ap1n+1=A0+1αABC(α)ˉt1n+1[{A(ˉtn,Un,Sn,An,Fn)+ρ3G3(ˉtn,An)(B3(ˉtn)B3(ˉtn1))]
    +αABC(α)Γ(α)nκ=0[{A(ˉtκ,Uκ,Sκ,Aκ,Fκ)Jα,1,κ+ρ3G3(ˉtκ,Aκ)(B3(ˉtκ)B3(ˉtκ1))Jα,1,κ],Fp1n+1=F0+1αABC(α)ˉt1n+1[{F(ˉtn,An,Fn,Qn)+ρ4G4(ˉtn,Fn)(B4(ˉtn)B4(ˉtn1))]+αABC(α)Γ(α)nκ=0[{F(ˉtκ,Aκ,Fκ,Qκ)Jα,1,κ+ρ4G4(ˉtκ,Fκ)(B4(ˉtκ)B4(ˉtκ1))Jα,1,κ],Qp1n+1=Q0+1αABC(α)ˉt1n+1[{Q(ˉtn,Fn,Qn)+ρ5G5(ˉtn,Qn)(B5(ˉtn)B5(ˉtn1))]+αABC(α)Γ(α)nκ=0[{Q(ˉtκ,Fκ,Qκ)Jα,1,κ+ρ5G5(ˉtκ,Qκ)(B5(ˉtκ)B5(ˉtκ1))Jα,1,κ].

    Also,

    Jα,1,κ=((n+1))α1[{((κ+1))2F1([,1α],[1+],κ+1n+1)(κ)2F1([,1α],[1+],κn)],Jα,2,κ=((n+1))α1(+1)[{((κ+1))+12F1([1+,1α],[2+],κ+1n+1)(1+)((κ+1))+12F1([,1α],[1+],κ+1n)((κ))+12F1([1+,1α],[2+],κn+1)+((κ))(1+)(1+κ)2F1([,1α],[1+],κn)],Jα,3,κ=((κ+1))α1(+1)(+2)[{(+1)((κ+1))+22F1([2+,1α],[3+],κ+1n+1)2(+2)(κ+12)((κ+1))+12F1([1+,1α],[2+],κ+1n+1)+κ(+1)(+2)((κ+1))+12F1([,1α],[1+],κ+1n)+2(+2)(κ+12)((κ))+12F1([1+,1α],[2+],κn+1)(+1)(κ)+22F1([2+,1α],[3+],κn)(+1)(+2)(κ+1)(κ)+12F1([,1α],[1+],κn+1)].

    To exemplify the theoretical outcomes of the suggested framework, numerical computations were performed in this part. We accomplish this using the stochastic complete numerical technique proposed by Atangana and Araz [52]. Moreover, we compute the fractal-fractional model (3.2) for Atangana-Baleanu-Caputo sense when both fractional-order α and fractal-dimension are distinct.

    Figures 35 illustrate the effects of uninfected U(ˉt), latently infected S(ˉt), actively infected A(ˉt), free virus F(ˉt), and antibodies Q(ˉt) at various fractional-orders and fixed fractal-dimensions. We assign the following parameter values: Λ=10,ς=0.1,λ1=2,λ2=2,ϕ=0.5,ν1=0.5,σ=5,δ=10,φ=2,ν2=10,ξ=3,χ=2,ζ=4. To demonstrate the system's dynamical behaviour, we input various white noise levels (5.1). We first take into account the white noise components ρ1=0.9,ρ2=0.9,ρ3=0.7,ρ4=0.9 and ρ5=0.8, where the distinctive stationary distribution sensitivity criterion Rs0>1 is attained. As the virus spreads through the community, the class diminishes over time and eventually affects all other categories in the structure. This classification corresponds rapidly at low orders and slowly at higher orders, which displays a consistent tendency.

    Figure 3.  Graphical display of uninfected cells U(ˉt) and latently infected cells S(ˉt) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying fractional-order with fixed fractal-dimension.
    Figure 4.  Graphical display of actively infected cells A(ˉt) and free virus F(ˉt) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying fractional-order with fixed fractal-dimension.
    Figure 5.  Graphical display of antibodies Q(ˉt) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying fractional-order with fixed fractal-dimension.

    Figures 68 display the temporal patterns of (U(ˉt),S(ˉt),A(ˉt),F(ˉt),Q(ˉt)) of the stochastic system (5.1) involving white noise ρ1=0.9,ρ2=0.9,ρ3=0.7,ρ4=0.9 and ρ5=0.8, respectively. The solution varies at white noises, having a corresponding stochastic mean. The affected cells S(ˉt) exhibit a rapid decline in behaviour over time, similar to the behaviour of uninfected cells U(ˉt) at various fractal-fractional orders.

    Figure 6.  Graphical display of uninfected cells U(ˉt) and latently infected cells S(ˉt) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying both fractional-order with fractal-dimension.
    Figure 7.  Graphical display of actively infected cells A(ˉt) and free virus F(ˉt) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying both fractional-order with fractal-dimension.
    Figure 8.  Graphical display of antibodies Q(ˉt) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying both fractional-order with fractal-dimension.

    Figures 911 show the impacts of uninfected U(ˉt), latently infected S(ˉt), actively infected A(ˉt), free virus F(ˉt), and antibodies Q(ˉt) at various fractal-dimension and fixed fractional-orders. The corresponding attributed values: Λ=10,ς=0.1,λ1=2,λ2=2,ϕ=0.5,ν1=0.5,σ=5,δ=10,φ=2,ν2=10,ξ=3,χ=2,ζ=4. Then, by increasing the white noise intensities to ρ1=3.9,ρ2=3.7,ρ3=3.9,ρ4=3.9 and ρ5=3.8, we are able to satisfy the elimination criterion ˜Rs0<1 in Theorem 4.3 and validate the findings. Figures 911 demonstrate that as the white noise intensity escalates, contaminated lymphocytes S(ˉt), productively infested cells A(ˉt), and uncontrolled pathogen A(ˉt) can all perish and settle at a variety of fractal dimensions and fixed fractional-order. This shows that white noise concentration can effectively eradicate all insidiously, proactively, and freely virally infested cells, dramatically reduce the quantity of virally affected cells, and prevent the proliferation of contaminated nuclei.

    Figure 9.  Graphical display of uninfected cells U(ˉt) and latently infected cells S(ˉt) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying fractal-dimension with fixed fractional-order.
    Figure 10.  Graphical display of actively infected cells A(ˉt) and free virus F(ˉt) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying fractal-dimension with fixed fractional-order.
    Figure 11.  Graphical display of antibodies Q(ˉt) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and varying fractal-dimension with fixed fractional-order.

    Figures 1214 predict the behaviour of uninfected U(ˉt), latently infected S(ˉt), actively infected A(ˉt), free virus F(ˉt), and antibodies Q(ˉt) at various fractal-dimension and fractional-orders. The corresponding attributed values: Λ=10,ς=0.1,λ1=2,λ2=2,ϕ=0.5,ν1=0.5,σ=5,δ=10,φ=2,ν2=10,ξ=3,χ=2,ζ=4. Then, by increasing the white noise intensities to ρ1=3.9,ρ2=3.7,ρ3=3.9,ρ4=3.9 and ρ5=3.8, and ˜Rs0<1. This shows that the stochastic noise is demonstrated to be suppressed by the massive boom. The infectious populace is disappearing more significantly when both fractional-order and fractal-dimension are changed simultaneously in an infectious system in comparison to fractional systems, which leads to fascinating and biologically more plausible findings.

    Figure 12.  Graphical display of uninfected cells U(ˉt) and latently infected cells S(ˉt) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and both varying fractal-dimension with fractional-order.
    Figure 13.  Graphical display of actively infected cells A(ˉt) and free virus F(ˉt) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and both varying fractal-dimension with fractional-order.
    Figure 14.  Graphical display of antibodies Q(ˉt) of the model (5.1) considering the fractal-fractional derivative with generalized Mittag-Leffler kernel and both varying fractal-dimension with fractional-order.

    Figures 1517 demonstrate the effect of uninfected U(ˉt), latently infected S(ˉt), actively infected A(ˉt), free virus F(ˉt), and antibodies Q(ˉt) at fixed fractal-dimension and fractional-orders with and without control, respectively. Considering an inadequate CTL reaction, we examine how virus replication affects the patterns of HCV and immunological reactions from acute infection through the chronic stage. This is accomplished using a mix of analytical and numerical techniques. Since the target cell restriction prevents the penetration of new viral variations in the case of severe liver damage, virus development is predicted to come to an end.

    Figure 15.  Graphical display of uninfected cells U(ˉt) and latently infected cells S(ˉt) of the model (5.1) with and without control when α=0.98 considering the fractal-fractional derivative with generalized Mittag-Leffler kernel.
    Figure 16.  Graphical display of actively infected cells A(ˉt) and free virus F(ˉt) of the model (5.1) with and without control when α=0.98 considering the fractal-fractional derivative with generalized Mittag-Leffler kernel.
    Figure 17.  Graphical display of antibodies Q(ˉt) of the model (5.1) with and without control when α=0.98 considering the fractal-fractional derivative with generalized Mittag-Leffler kernel.

    As a result of these pictorial outcomes, we draw the conclusion that by using this novel fractal-fractional operator concept, it is possible to detect more precise outcomes and to offer a wider insight of problems that arise in engineering and science as well as in the reality.

    In this article, we examined the variations in cellular complexities of a novel randomized fractal-fractional virus transmission system considering latently diseased tissues and a Holling type II functionality reaction. We discovered the existence of non-negative solutions to the examined system by accounting for environmental noise and the fractal effects of vaccination. In view of Itô's technique and Lyapunov candidate, we established the necessary assumptions of the stochastically permanence of the virus transmission scenario and the elimination of chronically diseased, productively contaminated cells and independent pathogen fragments. Ultimately, in order to create the suggested system, we employed the F-F calculus notion in the ABC context. Additionally, numerical simulations are provided to understand the tendencies of our theoretical model's analysis. We determine that increasing the noise strength will eventually render the virus obsolete. The illustration analysis shows that the fractal-fractional notion outperforms the integer-order and classical derivatives in terms of effectiveness and biological dependability. Upcoming research on viral infections, particularly the novel COVID-19, monkey pox and lumpy virus can confidently implement the revolutionary modelling methodology termed as the fractal-fractional operator.

    The authors declare there is no conflict of interest.



    [1] S. Cassels, S. J. Clark, M. Morris, Mathematical models for HIV transmission dynamics, J. Acquired Immune Defic. Syndr., 47 (2008), S34–S39. https://doi.org/10.1097/QAI.0b013e3181605da3 doi: 10.1097/QAI.0b013e3181605da3
    [2] O. S. Deep, S. Nallamalli, L. N. S. Naik, G. V. SaiTeja, Mathematical model for transmission of Ebola, Procedia Comput. Sci., 48 (2015), 741–745. https://doi.org/10.1016/j.procs.2015.04.210 doi: 10.1016/j.procs.2015.04.210
    [3] A. Zeb, E. Alzahrani, V. S. Erturk, G. Zaman, Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class, Biomed. Res. Int., 2020 (2020), 1–7. https://doi.org/10.1155/2020/3452402 doi: 10.1155/2020/3452402
    [4] M. A. Khan, Dengue infection modeling and its optimal control analysis in East Java, Indonesia, Heliyon, 7 (2021), e06023. https://doi.org/10.1016/j.heliyon.2021.e06023 doi: 10.1016/j.heliyon.2021.e06023
    [5] S. Banerjee, N. Gupta, P. Kodan, A. Mittal, Y. Ray, N. Nischal, et al., Nipah virus disease: A rare and intractable disease, Intractable Rare Dis. Res., 8 (2019), 1–8. https://doi.org/10.5582/irdr.2018.01130 doi: 10.5582/irdr.2018.01130
    [6] S. Zhao, Z. Xu, Y. Lu, A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China, Int. J. Epidemiol., 29 (2000), 744–752. https://doi.org/10.1093/ije/29.4.744 doi: 10.1093/ije/29.4.744
    [7] S. Seewaldt, H. E. Thomas, M. Ejrnaes, U. Christen, T. Wolfe, E. Rodrigo, et al., Virus-induced autoimmune diabetes: Most beta-cells die through inflammatory cytokines and not perforin from autoreactive (anti-viral) cytotoxic T-lymphocytes, Diabetes, 49 (2000), 1801–1809. https://doi.org/10.2337/diabetes.49.11.1801 doi: 10.2337/diabetes.49.11.1801
    [8] M. Eichelberger, W. Allan, M. Zijlstra, R. Jaenisch, P. C. Doherty, Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells, J. Exp. Med., 174 (1994), 875–880. https://doi.org/10.1084/jem.174.4.875 doi: 10.1084/jem.174.4.875
    [9] D. J. Topham, R. A. Tripp, P. C. Doherty, CD8+ T cells clear influenza virus by perforin or Fas-dependent processes, J. Immunol., 159 (1997), 5197–5200.
    [10] S. Pan, S. P. Chakrabarty, Threshold dynamics of HCV model with cell-to-cell transmission and a non-cytolytic cure in the presence of humoral immunity, Commun. Nonlinear Sci. Numer. Simul., 61 (2018), 180–197. https://doi.org/10.1016/j.cnsns.2018.02.010 doi: 10.1016/j.cnsns.2018.02.010
    [11] A. M. Elaiw, N. H. AlShamrani, Global properties of nonlinear humoral immunity viral infection models, Int. J. Biomath., 8 (2015), 1550058. https://doi.org/10.1142/S1793524515500588 doi: 10.1142/S1793524515500588
    [12] Y. Luo, L. Zhang, T. Zheng, Z. Teng, Analysis of a diffusive virus infection model with humoral immunity, cell-to-cell transmission and nonlinear incidence, Physica A, 535 (2019), 122415. https://doi.org/10.1016/j.physa.2019.122415 doi: 10.1016/j.physa.2019.122415
    [13] Y. Wang, M. Lu, D. Jiang, Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays, Math. Biosci. Eng., 18 (2021), 274–299. https://doi.org/10.3934/mbe.2021014 doi: 10.3934/mbe.2021014
    [14] K. Hattaf, Global stability and Hopf bifurcation of a generalized viral infection model with multi-delays and humoral immunity, Physica A, 545 (2020), 123689. https://doi.org/10.1016/j.physa.2019.123689 doi: 10.1016/j.physa.2019.123689
    [15] C. Rajivganthi, F. A. Rihan, Global dynamics of a stochastic viral infection model with latently infected cells, Appl. Sci., 11 (2021), 10484. https://doi.org/10.3390/app112110484 doi: 10.3390/app112110484
    [16] O. Olaide, A. E. S. Ezugwu, T. Mohamed, L. Abualigah, Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm, IEEE Access, 10 (2022), 1–38. https://doi.org/10.1109/ACCESS.2022.3147821 doi: 10.1109/ACCESS.2022.3147821
    [17] A. E. Ezugwu, J. O. Agushaka, L. Abualigah, S. Mirjalili, A. H. Gandomi, Prairie dog optimization algorithm, Neural Comput. Appl., 2022 (2022), 1–49. https://doi.org/10.1007/s00521-022-07530-9 doi: 10.1007/s00521-022-07530-9
    [18] J. O. Agushaka, A. E. Ezugwu, L. Abualigah, Dwarf mongoose optimization algorithm, Comput. Methods Appl. Mech. Eng., 391 (2022), 114570. https://doi.org/10.1016/j.cma.2022.114570 doi: 10.1016/j.cma.2022.114570
    [19] L. Abualigah, D. Yousri, M. A. Elaziz, A. A. Ewees, M. A. Al-qaness, A. H. Gandom, Aquila optimizer: A novel meta-heuristic optimization algorithm, Reptile Search Algorithm (RSA), Comput. Ind. Eng., 157 (2021), 107250, https://doi.org/10.1016/j.cie.2021.107250 doi: 10.1016/j.cie.2021.107250
    [20] M. E. Omaba, Growth moment, stability and asymptotic behaviours of solution to a class of time-fractal-fractional stochastic differential equation, Chaos Solitons Fractals, 147 (2021), 110958. https://doi.org/10.1016/j.chaos.2021.110958 doi: 10.1016/j.chaos.2021.110958
    [21] M. Gao, D. Jiang, X. Wen, Stationary distribution and extinction for a stochastic two-compartment model of B-cell chronic lymphocytic leukemia, Int. J. Biomath., 14 (2021), 2150065. https://doi.org/10.1142/S1793524521500650 doi: 10.1142/S1793524521500650
    [22] Q. Liu, D. Jiang, Dynamical behavior of a stochastic multigroup staged-progression HIV model with saturated incidence rate and higher-order perturbations, Int. J. Biomath., 14 (2021), 2150051. https://doi.org/10.1142/S1793524521500510 doi: 10.1142/S1793524521500510
    [23] C. Gokila, M. Sambath, The threshold for a stochastic within-host CHIKV virus model with saturated incidence rate, Int. J. Biomath., 14 (2021), 2150042. https://doi.org/10.1142/S179352452150042X doi: 10.1142/S179352452150042X
    [24] L. Abualigah, A. Diabat, P. Sumari, A. H. Gandomi, Applications, deployments, and integration of internet of drones (IoD), IEEE Sens. J., 99 (2021), 25532–25546. https://doi.org/10.1109/JSEN.2021.3114266 doi: 10.1109/JSEN.2021.3114266
    [25] T. H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–176.
    [26] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, 1993.
    [27] T. H. Zhao, M. I. Khan, Y. M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, Math. Methods Appl. Sci., 2021 (2021). https://doi.org/10.1002/mma.7310
    [28] K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam, Y. M. Chu, Almost sectorial operators on Ψ-Hilfer derivative fractional impulsive integro-differential equations, Math. Methods Appl. Sci., 2021 (2021). https://doi.org/10.1002/mma.7954
    [29] Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, J. R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach, Fractal Fract., 5 (2021), 119. https://doi.org/10.3390/fractalfract5030119 doi: 10.3390/fractalfract5030119
    [30] S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. https://doi.org/10.1142/S0218348X22400266 doi: 10.1142/S0218348X22400266
    [31] F. Mainardi, Fractional calculus, in Some Basic Problems in Continuum and Statistical Mechanics, Springer, Vienna, (1997), 291–348. https://doi.org/10.1007/978-3-662-03425-5_12
    [32] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [33] W. M. Qian, H. H. Chu, M. K. Wang, Y. M. Chu, Sharp inequalities for the Toader mean of order 1 in terms of other bivariate means, J. Math. Inequal., 16 (2022), 127–141. https://doi.org/10.7153/jmi-2022-16-10 doi: 10.7153/jmi-2022-16-10
    [34] T. H. Zhao, H. H. Chu, Y. M. Chu, Optimal Lehmer mean bounds for the nth power-type Toader mean of n=1,1,3, J. Math. Inequal., 16 (2022), 157–168. https://doi.org/10.7153/jmi-2022-16-12 doi: 10.7153/jmi-2022-16-12
    [35] T. H. Zhao, M. K. Wang, Y. Q. Dai, Y. M. Chu, On the generalized power-type Toader mean, J. Math. Inequal., 16 (2022), 247–264. https://doi.org/10.7153/jmi-2022-16-18 doi: 10.7153/jmi-2022-16-18
    [36] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 2 (2015), 73–85. https://doi.org/10.18576/pfda/020202 doi: 10.18576/pfda/020202
    [37] C. Li, F. Zeng, Numerical Methods for Fractional Calculus, Chapman & Hall/CRC, Boca Raton, 2019.
    [38] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, preprint, arXiv: 1602.03408.
    [39] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 396 (2017), 102. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
    [40] M. Versaci, G. Angiulli, P. Crucitti, D. D. Carlo, F. Laganá, D. Pellicanó, et al., A fuzzy similarity-based approach to classify numerically simulated and experimentally detected carbon fiber-reinforced polymer plate defects, Sensors, 22 (2022), 4232. https://doi.org/10.3390/s22114232 doi: 10.3390/s22114232
    [41] S. N. Hajiseyedazizi, M. E. Samei, J. Alzabut, Y. M. Chu, On multi-step methods for singular fractional q-integro-differential equations, Open Math., 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093
    [42] S. Rashid, E. I. Abouelmagd, A. Khalid, F. B. Farooq, Y. M. Chu, Some recent developments on dynamical -discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels, Fractals, 30 (2022), 2240110. https://doi.org/10.1142/S0218348X22401107 doi: 10.1142/S0218348X22401107
    [43] F. Z. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: Time-fractional fishers equations, Fractals, 30 (2022), 2240051. https://doi.org/10.1142/S0218348X22400515 doi: 10.1142/S0218348X22400515
    [44] S. Rashid, E. I. Abouelmagd, S. Sultana, Y. M. Chu, New developments in weighted n-fold type inequalities via discrete generalized ĥ-proportional fractional operators, Fractals, 30 (2022), 2240056. https://doi.org/10.1142/S0218348X22400564 doi: 10.1142/S0218348X22400564
    [45] S. A. Iqbal, M. G. Hafez, Y. M. Chu, C. Park, Dynamical analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivativae, J. Appl. Anal. Comput., 12 (2022), 770–789. https://doi.org/10.11948/20210324 doi: 10.11948/20210324
    [46] X. B. Zhang, X. D. Wang, H. F. Huo, Extinction and stationary distribution of a stochastic SIRS epidemic model with standard incidence rate and partial immunity, Physica A, 531 (2019), 121548. https://doi.org/10.1016/j.physa.2019.121548 doi: 10.1016/j.physa.2019.121548
    [47] F. A. Rihan, H. J. Alsakaji, Analysis of a stochastic HBV infection model with delayed immune response, Math. Biosci. Eng., 18 (2021), 5194–5220. https://doi.org/10.3934/mbe.2021264 doi: 10.3934/mbe.2021264
    [48] X. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester UK, 1997.
    [49] K. X. Li, Stochastic delay fractional evolution equations driven by fractional Brownian motion, Math. Methods Appl. Sci., 38 (2015), 1582–1591. https://doi.org/10.1002/mma.3169 doi: 10.1002/mma.3169
    [50] A. Kerboua, A. Debbouche, D. Baleanu, Approximate controllability of Sobolev-type nonlocal fractional stochastic dynamic systems in Hilbert spaces, Abstr. Appl. Anal., 2013 (2013), 262191. https://doi.org/10.1155/2013/262191 doi: 10.1155/2013/262191
    [51] B. Pei, Y. Xu, On the non-Lipschitz stochastic differntial equations driven by fractional Brownian motion, Adv. Differ. Equations, 2016 (2016), 194. https://doi.org/10.1186/s13662-016-0916-1 doi: 10.1186/s13662-016-0916-1
    [52] A. Atangana, S. I. Araz, Modeling and forecasting the spread of COVID-19 with stochastic and deterministic approaches: Africa and Europe, Adv. Differ. Equations, 2021 (2021), 1–107. https://doi.org/10.1186/s13662-021-03213-2 doi: 10.1186/s13662-021-03213-2
    [53] B. S. T. Alkahtani, I. Koca, Fractional stochastic SIR model, Results Phys., 24 (2021), 104124. https://doi.org/10.1016/j.rinp.2021.104124 doi: 10.1016/j.rinp.2021.104124
    [54] S. Rashid, M. K. Iqbal, A. M. Alshehri, R. Ahraf, F. Jarad, A comprehensive analysis of the stochastic fractal-fractional tuberculosis model via Mittag-Leffler kernel and white noise, Results Phys., 39 (2022), 105764. https://doi.org/10.1016/j.rinp.2022.105764 doi: 10.1016/j.rinp.2022.105764
    [55] J. M. Shen, Z. H. Yang, W. M. Qian, W. Zhang, Y. M. Chu, Sharp rational bounds for the gamma function, Math. Inequal. Appl., 23 (2020), 843–853. https://doi.org/10.7153/mia-2020-23-68 doi: 10.7153/mia-2020-23-68
    [56] X. Song, S. Wang, J. Dong, Stability properties and Hopf bifurcation of a delayed viral infection model with lytic immune response, J. Math. Anal. Appl., 373 (2011), 345–355. https://doi.org/10.1016/j.jmaa.2010.04.010 doi: 10.1016/j.jmaa.2010.04.010
    [57] D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses, J. Gen. Virol., 84 (2003), 1743–1750. https://doi.org/10.1099/vir.0.19118-0 doi: 10.1099/vir.0.19118-0
    [58] N. Yousfi, K. Hattaf, A. Tridane, Modeling the adaptative immune response in HBV infection, J. Math. Biol., 63 (2011), 933–957. https://doi.org/10.1007/s00285-010-0397-x doi: 10.1007/s00285-010-0397-x
    [59] A. Murase, T. Sasaki, T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247–267. https://doi.org/10.1007/s00285-005-0321-y doi: 10.1007/s00285-005-0321-y
    [60] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulations, Mem. Entomol. Soc. Can., 45 (1965), 5–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
    [61] B. Oksendal, Stochastic Differential Equations: An Introduction with Applications, 6th edition, Springer, New York, NY, USA, 2003.
    [62] C Ji, D. Jiang, Treshold behaviour of a stochastic SIR model, Appl. Math. Modell., 38 (2014), 5067–5079. https://doi.org/10.1016/j.apm.2014.03.037 doi: 10.1016/j.apm.2014.03.037
  • This article has been cited by:

    1. Saima Rashid, Fahd Jarad, Hajid Alsubaie, Ayman A. Aly, Ahmed Alotaibi, A novel numerical dynamics of fractional derivatives involving singular and nonsingular kernels: designing a stochastic cholera epidemic model, 2023, 8, 2473-6988, 3484, 10.3934/math.2023178
    2. Maysaa Al-Qureshi, Saima Rashid, Fahd Jarad, Mohammed Shaaf Alharthi, Dynamical behavior of a stochastic highly pathogenic avian influenza A (HPAI) epidemic model via piecewise fractional differential technique, 2023, 8, 2473-6988, 1737, 10.3934/math.2023089
    3. Z. Avazzadeh, H. Hassani, P. Agarwal, S. Mehrabi, M. J. Ebadi, M. Sh. Dahaghin, An optimization method for studying fractional-order tuberculosis disease model via generalized Laguerre polynomials, 2023, 27, 1432-7643, 9519, 10.1007/s00500-023-08086-z
    4. Z. Avazzadeh, H. Hassani, M. J. Ebadi, Z. Zarei-Behjani, A. Bayati Eshkaftaki, S. Mehrabi, S. Haghighat, Generalized Lerch polynomials: application in fractional model of CAR-T cells for T-cell leukemia, 2023, 138, 2190-5444, 10.1140/epjp/s13360-023-04786-5
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2196) PDF downloads(113) Cited by(4)

Figures and Tables

Figures(17)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog