JPEG is the most common format for storing and transmitting photographic images on social network platforms. JPEG image is widely used in people's life because of their low storage space and high visual quality. Secret image sharing (SIS) technology is important to protect image data. Traditional SIS schemes generally focus on spatial images, however there is little research on frequency domain images. In addition, the current tiny research on SIS for JPEG images only focuses on JPEG images with a compression quality factor ($ QF $) of $ 100 $. To overcome the limitation of JPEG images in SIS, we propose a meaningful SIS for JPEG images to operate the quantized DCT coefficients of JPEG images. The random elements utilization model is applied to achieve meaningful shadow images. Our proposed scheme has a better quality of the shadow images and the recovered secret image. Experiment results and comparisons indicate the effectiveness of the scheme. The scheme can be used for JPEG images with any compression $ QF $. Besides, the scheme has good characteristics, such as $ (k, n) $ threshold, extended shadow images.
Citation: Yue Jiang, Xuehu Yan, Jia Chen, Jingwen Cheng, Jianguo Zhang. Meaningful secret image sharing for JPEG images with arbitrary quality factors[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11544-11562. doi: 10.3934/mbe.2022538
JPEG is the most common format for storing and transmitting photographic images on social network platforms. JPEG image is widely used in people's life because of their low storage space and high visual quality. Secret image sharing (SIS) technology is important to protect image data. Traditional SIS schemes generally focus on spatial images, however there is little research on frequency domain images. In addition, the current tiny research on SIS for JPEG images only focuses on JPEG images with a compression quality factor ($ QF $) of $ 100 $. To overcome the limitation of JPEG images in SIS, we propose a meaningful SIS for JPEG images to operate the quantized DCT coefficients of JPEG images. The random elements utilization model is applied to achieve meaningful shadow images. Our proposed scheme has a better quality of the shadow images and the recovered secret image. Experiment results and comparisons indicate the effectiveness of the scheme. The scheme can be used for JPEG images with any compression $ QF $. Besides, the scheme has good characteristics, such as $ (k, n) $ threshold, extended shadow images.
[1] | G. Blakley, Safeguarding cryptographic keys, Proc. Afips Natl. Comput. Conf., 48 (1979), 313. https://doi.org/10.1109/AFIPS.1979.98 doi: 10.1109/AFIPS.1979.98 |
[2] | A. Shamir, How to share a secret, Commun. ACM, 22 (1979), 612–613. https://doi.org/10.1145/359168.359176 doi: 10.1145/359168.359176 |
[3] | C. Thien, J. Lin, Secret image sharing, Comput. Graphics, 26 (2002), 767–770. https://doi.org/10.1016/S0097-8493(02)00131-0 doi: 10.1016/S0097-8493(02)00131-0 |
[4] | J. B. Feng, H. C. Wu, C. S. Tsai, Y. P. Chu, A new multi-secret images sharing scheme using largrange's interpolation, J. Syst. Software, 76 (2005), 326–339. https://doi.org/10.1016/j.jss.2004.07.250 doi: 10.1016/j.jss.2004.07.250 |
[5] | T. Liu, L. Lu, H. Yan, Polynomial-based extended secret image sharing scheme with reversible and unexpanded covers, Multimedia Tools Appl., 78 (2018), 1–23. https://doi.org/10.1007/s11042-018-6202-3 doi: 10.1007/s11042-018-6202-3 |
[6] | H. Yan, L. Lu, T. Liu, General meaningful shadow construction in secret image sharing, IEEE Access, 6 (2018), 45246–45255. https://doi.org/10.1109/ACCESS.2018.2865421 doi: 10.1109/ACCESS.2018.2865421 |
[7] | X. Liu, S. Wang, Z. Sang, Z. Zhang, A novel lossless recovery algorithm for basic matrix-based VSS, Multimedia Tools Appl., 77 (2018), 16461–16476. https://doi.org/10.1007/s11042-017-5215-7 doi: 10.1007/s11042-017-5215-7 |
[8] | N. Yang, S. Chen, H. Yu, C. Wang, Improvements of image sharing with steganography and authentication, J. Syst. Software, 80 (2006), 1070–1076. https://doi.org/10.1016/j.jss.2006.11.022 doi: 10.1016/j.jss.2006.11.022 |
[9] | T. Liu, L. Lu, M. Ding, T. Xuan, A Lossless polynomial-based secret image sharing scheme utilizing the filtering operation, Secur. Intell. Comput. Big-data Serv., 895 (2020), 129–139. https://doi.org/10.1007/978-3-030-16946-6_11 doi: 10.1007/978-3-030-16946-6_11 |
[10] | P. Li, J. Ma, H. Su, N. Yang, Improvements of a two-in-one image secret sharing scheme based on gray mixing model, J. Visual Commun. Image Represent., 23 (2012), 441–453. https://doi.org/10.1016/j.jvcir.2012.01.003 doi: 10.1016/j.jvcir.2012.01.003 |
[11] | J. Weir, Q. Yan, Sharing multiple secrets using visual cryptography, IEEE Int. Symp. Circuits Syst., 2009. https://doi.org/10.1109/ISCAS.2009.5117797 doi: 10.1109/ISCAS.2009.5117797 |
[12] | P. Li, N. Yang, Q. Kong, A novel two-in-one image secret sharing scheme based on perfect black visual cryptography, J. Real-Time Image Process., 14 (2018), 41–50. https://doi.org/10.1007/s11554-016-0621-z doi: 10.1007/s11554-016-0621-z |
[13] | X. Liu, S. Wang, Z. Sang, Z. Zhang, A novel mapping-based lossless recovery algorithm for vss, J. Real-Time Image Process., 14 (2016), 51–60. https://doi.org/10.1007/s11554-016-0644-5 doi: 10.1007/s11554-016-0644-5 |
[14] | Y. Jiang, Q. Qi, L. Lu, X. Zhou, Secret image sharing with dealer-participatory and non-dealer-participatory mutual shadow authentication capabilities, Mathematice, 8 (2020), 234. https://doi.org/10.3390/math8020234 doi: 10.3390/math8020234 |
[15] | H. Yan, X. Liu, N. Yang, An enhanced threshold visual secret sharing based on random grids, J. Real-Time Image Process., 14 (2015), 61–73. https://doi.org/10.1007/s11554-015-0540-4 doi: 10.1007/s11554-015-0540-4 |
[16] | N. Yang, New visual secret sharing schemes using probabilistic method, Pattern Recognit. Lett., 25 (2004), 481–494. https://doi.org/10.1016/j.patrec.2003.12.011 doi: 10.1016/j.patrec.2003.12.011 |
[17] | Z. Wang, H. Su, Secret image sharing with smaller shadow images, Pattern Recognit. Lett., 27 (2006), 551–555. https://doi.org/10.1016/j.patrec.2005.09.021 doi: 10.1016/j.patrec.2005.09.021 |
[18] | Y. Lin, H. Chan, Invertible secret image sharing with steganography, Pattern Recognit. Lett., 31 (2010), 1887–1893. https://doi.org/10.1016/j.patrec.2010.01.019 doi: 10.1016/j.patrec.2010.01.019 |
[19] | F. Liu, K. Wu, Embedded extended visual cryptography schemes, IEEE Trans. Inf. Forensics Secur., 2 (2011), 307–322. https://doi.org/10.1109/TIFS.2011.2116782 doi: 10.1109/TIFS.2011.2116782 |
[20] | H. He, Q. Lan, H. Tang, A secure image sharing scheme with high quality stego-images based on steganography, Multimedia Tools Appl., 76 (2017), 7677–7698. https://doi.org/10.1007/s11042-016-3429-8 doi: 10.1007/s11042-016-3429-8 |
[21] | J. Chen, H. Zhou, B. Zhou, Defining cost functions for adaptive jpeg steganography at the microscale, IEEE Trans. Inf. Forensics Secur., 14 (2019), 1052–1066. https://doi.org/10.1109/TIFS.2018.2869353 doi: 10.1109/TIFS.2018.2869353 |
[22] | Y. Tao, S. Li, P. Zhang, C. Wang, Towards Robust Image Steganography, IEEE Trans. Circuits Syst. Video Technol., 29 (2021), 594–600. https://doi.org/10.1109/TCSVT.2018.2881118 doi: 10.1109/TCSVT.2018.2881118 |
[23] | Z. Zhao, X. Guan, H. Zhang, F. Zhao, Improving the robustness of adaptive steganographic algorithms based on transport channel matching, IEEE Trans. Inf. Forensics Secur., 14 (2019), 1843–1856. https://doi.org/10.1109/TIFS.2018.2885438 doi: 10.1109/TIFS.2018.2885438 |
[24] | Y. Wang, M. Zhang, X. Li, H. Yu, Non-additive cost functions for jpeg steganography based on block boundary maintenance, IEEE Trans. Inf. Forensics Secur., 16 (2021), 1117–1130. https://doi.org/10.1109/TIFS.2020.3029908 doi: 10.1109/TIFS.2020.3029908 |
[25] | T. Taburet, P. Bas, W. Sawaya, J. Fridrich, Natural steganography in jpeg domain with a linear development pipeline, IEEE Trans. Inf. Forensics Secur., 16 (2020), 173–186. https://doi.org/10.1109/TIFS.2020.3007354 doi: 10.1109/TIFS.2020.3007354 |
[26] | Y. Sun, Research on Key Technologies of Robust and Meaningful Secret Image Sharing, Master's thesis, National University of Defense Technology in Hefei, 2020. In press. |
[27] | P. Bas, T. Filler, P. Tomas, "Break our steganographic system": the ins and outs of organizing BOSS, in Information Hiding, International Workshop on Information Hiding, (2011), 59–70. https://doi.org/10.1007/978-3-642-24178-9_5 |
[28] | H. Yan, T. Liu, L. Li, L. Lu, Robust secret image sharing resistant to noise in shares, ACM Trans. Multimedia Comput., Commun., Appl., 24 (2021), 1–22. https://doi.org/10.1145/3419750 doi: 10.1145/3419750 |