The aim of the paper was to give a description of nonlinear Jordan triple derivable mappings on trivial extension algebras. We proved that every nonlinear Jordan triple derivable mapping on a $ 2 $-torsion free $ * $-type trivial extension algebra is a sum of an additive derivation and an additive antiderivation. As an application, nonlinear Jordan triple derivable mappings on triangular algebras were characterized.
Citation: Xiuhai Fei, Cuixian Lu, Haifang Zhang. Nonlinear Jordan triple derivable mapping on $ * $-type trivial extension algebras[J]. Electronic Research Archive, 2024, 32(3): 1425-1438. doi: 10.3934/era.2024066
The aim of the paper was to give a description of nonlinear Jordan triple derivable mappings on trivial extension algebras. We proved that every nonlinear Jordan triple derivable mapping on a $ 2 $-torsion free $ * $-type trivial extension algebra is a sum of an additive derivation and an additive antiderivation. As an application, nonlinear Jordan triple derivable mappings on triangular algebras were characterized.
[1] | D. Benkovič, Jordan derivations and anti-derivations on triangular matrices, Linear Algebra Appl., 397 (2005), 235–244. https://doi.org/10.1016/j.laa.2004.10.017 doi: 10.1016/j.laa.2004.10.017 |
[2] | I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104–1110. https://doi.org/10.1090/S0002-9939-1957-0095864-2 doi: 10.1090/S0002-9939-1957-0095864-2 |
[3] | J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc., 53 (1975), 321–324. https://www.ams.org/journals/proc/1975-053-02/S0002-9939-1975-0399182-5/S0002-9939-1975-0399182-5.pdf |
[4] | M. Brešar, J. Vukman, Jordan derivations on semiprime rings, Bull. Austral. Math. Soc., 73 (1988), 321–322. https://doi.org/10.1090/S0002-9939-1988-0929422-1 doi: 10.1090/S0002-9939-1988-0929422-1 |
[5] | J. H. Zhang, Jordan derivations on nest algebras, Acta Math. Sinica (Chin. Ser.), 41 (1988), 205–212. https://doi.org/10.12386/A1998sxxb0057 doi: 10.12386/A1998sxxb0057 |
[6] | J. H. Zhang, W. Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl., 419 (2006), 251–255. https://doi.org/10.1016/j.laa.2006.04.015 doi: 10.1016/j.laa.2006.04.015 |
[7] | H. Ghahramani, Jordan derivations on trivial extensions, Bull. Iranian Math. Soc., 39 (2013), 635–645. http://bims.iranjournals.ir/article_251.html |
[8] | D. Bennis, B. Fahid, Derivations and the first cohomology group of trivial extension algebras, Mediterr. J. Math., 11 (2017), 150–171. https://doi.org/10.48550/arXiv.1604.02758 doi: 10.48550/arXiv.1604.02758 |
[9] | Y. B. Li, L. V. Wyk, F. Wei, Jordan derivations and anti-derivations of generalized matrix triangular matrices, Oper. Matrices, 7 (2013), 399–415. https://doi.org/10.7153/oam-07-23 doi: 10.7153/oam-07-23 |
[10] | X. H. Fei, H. F. Zhang, Jordan triple derivations on $*$-type trivial extension algebras, Adv. Math. (China), (2023), 1–12. https://link.cnki.net/urlid/11.2312.O1.20231025.1731.002 |
[11] | F. Lu, Jordan derivable maps of prime rings, Comm. Algebra, 12 (2010), 4430–4440. https://doi.org/10.1080/00927870903366884 doi: 10.1080/00927870903366884 |
[12] | X. H. Fei, H. F. Zhang, Nonlinear Jordan derivable mappings of generalized matrix algebras by Lie product square-zero elements, J. Math., 9 (2021), 1–13. https://doi.org/10.1155/2021/2065425 doi: 10.1155/2021/2065425 |
[13] | M. Ashraf, A. Jabeen, Nonlinear Jordan triple derivable mappings of triangular algebras, Pac. J. Appl. Math., 7 (2016), 225–235. https://www.zhangqiaokeyan.com/journal-foreign-detail/070409512033.html |
[14] | M. Fošner, D. Iliševi, On Jordan triple derivations and related mappings, Mediterr. J. Math., 5 (2008), 415–427. https://doi.org/10.1007/s00009-008-0159-9 doi: 10.1007/s00009-008-0159-9 |
[15] | X. H. Fei, H. F. Zhang, A class of nonlinear nonglobal Semi-Jordan triple derivable mappings on Triangular Algebras, J. Math., 8 (2021), 1–13. https://doi.org/10.1155/2021/4401874 doi: 10.1155/2021/4401874 |
[16] | M. Brešar, Mapping of semiprime rings, J. Algebra, 127 (1989), 218–228. https://doi.org/10.1016/0021-8693(89)90285-8 |
[17] | F. F. Zhao, C. J. Li, Nonlinear $*$-Jordan triple derivations on von Neuman algebras, Math. Slovaca, 1 (2018), 163–170. https://doi.org/10.1515/ms-2017-0089 doi: 10.1515/ms-2017-0089 |
[18] | X. H. Fei, H. F. Zhang, Z. H Wang, A class of nonlinear local higher Jordan triple derivable mappings on on Triangular Algebras, Acta Math. Sin. Chinese Ser., 64 (2021), 839–856. https://doi.org/10.12386/A2021sxxb0070 doi: 10.12386/A2021sxxb0070 |
[19] | W. S. Cheung, Mappings on triangular algebras, Ph.D Thesis, University of Victoria, 2000. Available from: http://dspace.library.uvic.ca/bitstream/handle/1828/9349/Cheung_Wai-Shun_PhD_2000.pdf?sequence = 1 & isAllowed = y |
[20] | G. F. Birkenmeier, J. K. Park, S. T. Rizvi, Extensions of Rings and Modules, Birkhauser, 2013. Available from: https://link.springer.com/book/10.1007/978-0-387-92716-9 |
[21] | I. Assem, D. Happel, O. Roldan, Representation finite trivial extension algebras, J. Pure Appl. Algebra, 33 (1984), 235–242. https://doi.org/10.1016/0022-4049(84)90058-6 doi: 10.1016/0022-4049(84)90058-6 |
[22] | I. Assem, J. Nehring, Domestic trivial extension of simply connected algebras, Tsukuba J. Math., 13 (1989), 31–72. https://doi.org/10.21099/tkbjm/1496161006 doi: 10.21099/tkbjm/1496161006 |
[23] | W. G. Bade, H. G. Dales, Z. A. Lykova, Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc., 37 (1999), 113–114. http://dx.doi.org/10.1090/memo/0656 doi: 10.1090/memo/0656 |