Research article Special Issues

Nonlinear Jordan triple derivable mapping on $ * $-type trivial extension algebras

  • Received: 03 November 2023 Revised: 03 January 2024 Accepted: 17 January 2024 Published: 05 February 2024
  • The aim of the paper was to give a description of nonlinear Jordan triple derivable mappings on trivial extension algebras. We proved that every nonlinear Jordan triple derivable mapping on a $ 2 $-torsion free $ * $-type trivial extension algebra is a sum of an additive derivation and an additive antiderivation. As an application, nonlinear Jordan triple derivable mappings on triangular algebras were characterized.

    Citation: Xiuhai Fei, Cuixian Lu, Haifang Zhang. Nonlinear Jordan triple derivable mapping on $ * $-type trivial extension algebras[J]. Electronic Research Archive, 2024, 32(3): 1425-1438. doi: 10.3934/era.2024066

    Related Papers:

  • The aim of the paper was to give a description of nonlinear Jordan triple derivable mappings on trivial extension algebras. We proved that every nonlinear Jordan triple derivable mapping on a $ 2 $-torsion free $ * $-type trivial extension algebra is a sum of an additive derivation and an additive antiderivation. As an application, nonlinear Jordan triple derivable mappings on triangular algebras were characterized.



    加载中


    [1] D. Benkovič, Jordan derivations and anti-derivations on triangular matrices, Linear Algebra Appl., 397 (2005), 235–244. https://doi.org/10.1016/j.laa.2004.10.017 doi: 10.1016/j.laa.2004.10.017
    [2] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104–1110. https://doi.org/10.1090/S0002-9939-1957-0095864-2 doi: 10.1090/S0002-9939-1957-0095864-2
    [3] J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc., 53 (1975), 321–324. https://www.ams.org/journals/proc/1975-053-02/S0002-9939-1975-0399182-5/S0002-9939-1975-0399182-5.pdf
    [4] M. Brešar, J. Vukman, Jordan derivations on semiprime rings, Bull. Austral. Math. Soc., 73 (1988), 321–322. https://doi.org/10.1090/S0002-9939-1988-0929422-1 doi: 10.1090/S0002-9939-1988-0929422-1
    [5] J. H. Zhang, Jordan derivations on nest algebras, Acta Math. Sinica (Chin. Ser.), 41 (1988), 205–212. https://doi.org/10.12386/A1998sxxb0057 doi: 10.12386/A1998sxxb0057
    [6] J. H. Zhang, W. Y. Yu, Jordan derivations of triangular algebras, Linear Algebra Appl., 419 (2006), 251–255. https://doi.org/10.1016/j.laa.2006.04.015 doi: 10.1016/j.laa.2006.04.015
    [7] H. Ghahramani, Jordan derivations on trivial extensions, Bull. Iranian Math. Soc., 39 (2013), 635–645. http://bims.iranjournals.ir/article_251.html
    [8] D. Bennis, B. Fahid, Derivations and the first cohomology group of trivial extension algebras, Mediterr. J. Math., 11 (2017), 150–171. https://doi.org/10.48550/arXiv.1604.02758 doi: 10.48550/arXiv.1604.02758
    [9] Y. B. Li, L. V. Wyk, F. Wei, Jordan derivations and anti-derivations of generalized matrix triangular matrices, Oper. Matrices, 7 (2013), 399–415. https://doi.org/10.7153/oam-07-23 doi: 10.7153/oam-07-23
    [10] X. H. Fei, H. F. Zhang, Jordan triple derivations on $*$-type trivial extension algebras, Adv. Math. (China), (2023), 1–12. https://link.cnki.net/urlid/11.2312.O1.20231025.1731.002
    [11] F. Lu, Jordan derivable maps of prime rings, Comm. Algebra, 12 (2010), 4430–4440. https://doi.org/10.1080/00927870903366884 doi: 10.1080/00927870903366884
    [12] X. H. Fei, H. F. Zhang, Nonlinear Jordan derivable mappings of generalized matrix algebras by Lie product square-zero elements, J. Math., 9 (2021), 1–13. https://doi.org/10.1155/2021/2065425 doi: 10.1155/2021/2065425
    [13] M. Ashraf, A. Jabeen, Nonlinear Jordan triple derivable mappings of triangular algebras, Pac. J. Appl. Math., 7 (2016), 225–235. https://www.zhangqiaokeyan.com/journal-foreign-detail/070409512033.html
    [14] M. Fošner, D. Iliševi, On Jordan triple derivations and related mappings, Mediterr. J. Math., 5 (2008), 415–427. https://doi.org/10.1007/s00009-008-0159-9 doi: 10.1007/s00009-008-0159-9
    [15] X. H. Fei, H. F. Zhang, A class of nonlinear nonglobal Semi-Jordan triple derivable mappings on Triangular Algebras, J. Math., 8 (2021), 1–13. https://doi.org/10.1155/2021/4401874 doi: 10.1155/2021/4401874
    [16] M. Brešar, Mapping of semiprime rings, J. Algebra, 127 (1989), 218–228. https://doi.org/10.1016/0021-8693(89)90285-8
    [17] F. F. Zhao, C. J. Li, Nonlinear $*$-Jordan triple derivations on von Neuman algebras, Math. Slovaca, 1 (2018), 163–170. https://doi.org/10.1515/ms-2017-0089 doi: 10.1515/ms-2017-0089
    [18] X. H. Fei, H. F. Zhang, Z. H Wang, A class of nonlinear local higher Jordan triple derivable mappings on on Triangular Algebras, Acta Math. Sin. Chinese Ser., 64 (2021), 839–856. https://doi.org/10.12386/A2021sxxb0070 doi: 10.12386/A2021sxxb0070
    [19] W. S. Cheung, Mappings on triangular algebras, Ph.D Thesis, University of Victoria, 2000. Available from: http://dspace.library.uvic.ca/bitstream/handle/1828/9349/Cheung_Wai-Shun_PhD_2000.pdf?sequence = 1 & isAllowed = y
    [20] G. F. Birkenmeier, J. K. Park, S. T. Rizvi, Extensions of Rings and Modules, Birkhauser, 2013. Available from: https://link.springer.com/book/10.1007/978-0-387-92716-9
    [21] I. Assem, D. Happel, O. Roldan, Representation finite trivial extension algebras, J. Pure Appl. Algebra, 33 (1984), 235–242. https://doi.org/10.1016/0022-4049(84)90058-6 doi: 10.1016/0022-4049(84)90058-6
    [22] I. Assem, J. Nehring, Domestic trivial extension of simply connected algebras, Tsukuba J. Math., 13 (1989), 31–72. https://doi.org/10.21099/tkbjm/1496161006 doi: 10.21099/tkbjm/1496161006
    [23] W. G. Bade, H. G. Dales, Z. A. Lykova, Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc., 37 (1999), 113–114. http://dx.doi.org/10.1090/memo/0656 doi: 10.1090/memo/0656
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(755) PDF downloads(96) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog