Research article Special Issues

Neural network-based adaptive finite-time tracking control for multiple inputs uncertain nonlinear systems with positive odd integer powers and unknown multiple faults

  • Received: 13 January 2025 Revised: 22 February 2025 Accepted: 26 February 2025 Published: 06 March 2025
  • MSC : 93A30, 93C10, 97N40

  • This paper addresses the adaptive finite-time tracking control (FTTC) problem for multiple-input nonlinear systems (NSs). The system under consideration encompasses high-order nonlinear terms with positive odd integer powers, uncertain dynamics, parametric nonlinear dynamics, multiple unknown faults, and unknown control gains. The proposed adaptive FTTC strategy integrates the neural network (NN) approximation technique with the backstepping control approach. By employing the NN approximator, the challenge of approximating uncertain nonlinear dynamics and unknown nonlinear functions was effectively resolved. Concurrently, adaptive control laws for unknown parameters were formulated using the adaptive estimation method. Furthermore, to address unknown control coefficients arising from unknown faults and unknown control gains within the system, the Nussbaum gain function (NGF) was incorporated into the control design process. Subsequently, NN-based adaptive FTTC strategies were developed for inputs under various fault conditions. The designed control strategies ensured that all signals of the closed-loop system (ASCLS) with multiple faults maintain semi-global practical finite-time stability (SGPFS), and the tracking error of the system converges to a small neighborhood of zero within a finite time (SNZFT). Finally, the efficacy of the developed control method was validated through a simulation example.

    Citation: Miao Xiao, Zhe Lin, Qian Jiang, Dingcheng Yang, Xiongfeng Deng. Neural network-based adaptive finite-time tracking control for multiple inputs uncertain nonlinear systems with positive odd integer powers and unknown multiple faults[J]. AIMS Mathematics, 2025, 10(3): 4819-4841. doi: 10.3934/math.2025221

    Related Papers:

  • This paper addresses the adaptive finite-time tracking control (FTTC) problem for multiple-input nonlinear systems (NSs). The system under consideration encompasses high-order nonlinear terms with positive odd integer powers, uncertain dynamics, parametric nonlinear dynamics, multiple unknown faults, and unknown control gains. The proposed adaptive FTTC strategy integrates the neural network (NN) approximation technique with the backstepping control approach. By employing the NN approximator, the challenge of approximating uncertain nonlinear dynamics and unknown nonlinear functions was effectively resolved. Concurrently, adaptive control laws for unknown parameters were formulated using the adaptive estimation method. Furthermore, to address unknown control coefficients arising from unknown faults and unknown control gains within the system, the Nussbaum gain function (NGF) was incorporated into the control design process. Subsequently, NN-based adaptive FTTC strategies were developed for inputs under various fault conditions. The designed control strategies ensured that all signals of the closed-loop system (ASCLS) with multiple faults maintain semi-global practical finite-time stability (SGPFS), and the tracking error of the system converges to a small neighborhood of zero within a finite time (SNZFT). Finally, the efficacy of the developed control method was validated through a simulation example.



    加载中


    [1] M. H. Toodeshki, Q. J. Yao, Fuzzy adaptive fixed-time control for output-constrained uncertain nonstrict-feedback time-delay systems, J. Franklin I., 361 (2024), 107302. https://doi.org/10.1016/j.jfranklin.2024.107302 doi: 10.1016/j.jfranklin.2024.107302
    [2] Z. Q. Zhang, Q. F. Wang, Y. L. Sang, S. Z. S. Ge, Globally adaptive neural network output-feedback control for uncertain nonlinear systems, IEEE T. Neur. Net. Lear., 34 (2023), 9078–9087. https://doi.org/10.1109/TNNLS.2022.3155635 doi: 10.1109/TNNLS.2022.3155635
    [3] H. N. Zhao, J. S. Zhao, Z. Y. Sun, D. X. Yu, Event-triggered-based fuzzy adaptive tracking control for stochastic nonlinear systems against multiple constraints, Fuzzy Set. Syst., 504 (2025), 109253. https://doi.org/10.1016/j.fss.2024.109253 doi: 10.1016/j.fss.2024.109253
    [4] X. L. Zhang, W. Y. Zhang, J. D. Cao, H. Liu, Observer-based command filtered adaptive fuzzy control for fractional-order MIMO nonlinear systems with unknown dead zones, Expert Syst. Appl., 255 (2024), 124623. https://doi.org/10.1016/j.eswa.2024.124623 doi: 10.1016/j.eswa.2024.124623
    [5] J. S. Zhao, B. X. Zhang, Y. Z. Hu, D. X. Yu, Z. Y. Sun, C. L. P. Chen, Prescribed performance-based switching tracking algorithm for DC-DC buck power converter with nonaffine input and stochastic disturbance, IEEE T. Syst. Man Cy. -S., 2025. https://doi.org/10.1109/TSMC.2024.3515040 doi: 10.1109/TSMC.2024.3515040
    [6] Y. Z. Zhu, Z. Wang, H. J. Liang, C. K. Ahn, Neural-network-based predefined-time adaptive consensus in nonlinear multi-agent systems with switching topologies, IEEE T. Neur. Net. Lear., 35 (2024), 9995–10005. https://doi.org/10.1109/TNNLS.2023.3238336 doi: 10.1109/TNNLS.2023.3238336
    [7] Y. M. Li, X. Min, S. C. Tong, Adaptive fuzzy inverse optimal control for uncertain strict-feedback nonlinear systems, IEEE T. Fuzzy Syst., 28 (2020), 2363–2374. https://doi.org/10.1109/TFUZZ.2019.2935693 doi: 10.1109/TFUZZ.2019.2935693
    [8] S. T. Vu, T. D. Nguyen, H. V. Dang, V. S. Nguyen, Adaptive neural network fault-tolerant sliding mode control for ship berthing with actuator faults and input saturation, Int. J. Nav. Arch. Ocean, 17 (2025), 100644. https://doi.org/10.1016/j.ijnaoe.2025.100644 doi: 10.1016/j.ijnaoe.2025.100644
    [9] R. P. Xi, H. G. Zhang, H. L. Huang, Y. S. Li, Adaptive command filtered control for a class of random nonlinear systems under model-based event-triggered control design, IEEE T. Syst. Man Cy. -S., 54 (2024), 5074–5084. https://doi.org/10.1109/TSMC.2024.3389994 doi: 10.1109/TSMC.2024.3389994
    [10] W. R. Shi, M. Z. Hou, M. R. Hao, Adaptive robust dynamic surface asymptotic tracking for uncertain strict-feedback nonlinear systems with unknown control direction, ISA T., 121 (2022), 95–104. https://doi.org/10.1016/j.isatra.2021.04.009 doi: 10.1016/j.isatra.2021.04.009
    [11] C. Sun, Y. Lin, Q. R. Meng, L. Li, Adaptive output feedback fault-tolerant control for a class of nonlinear systems based on a sensor fusion mechanism, ISA T., 156 (2025), 457–467. https://doi.org/10.1016/j.isatra.2024.11.014 doi: 10.1016/j.isatra.2024.11.014
    [12] S. Y. Lü, H. Shen, Adaptive fuzzy asymptotic tracking control of uncertain nonlinear systems with full state constraints, IEEE T. Fuzzy Syst., 32 (2024), 2750–2761. https://doi.org/10.1109/TFUZZ.2024.3360146 doi: 10.1109/TFUZZ.2024.3360146
    [13] M. Kharrat, M. Krichen, H. Alhazmi, P. Mercorelli, Neural network-based adaptive fault-tolerant control for strict-feedback nonlinear systems with input dead zone and saturation, J. Franklin I., 362 (2025), 107471. https://doi.org/10.1016/j.jfranklin.2024.107471 doi: 10.1016/j.jfranklin.2024.107471
    [14] X. X. Shen, J. P. Hu, W. C. Xue, B. Meng, Finite-time output consensus control of nonlinear uncertain multi-agent systems via extended state observer, Syst. Control Lett., 194 (2024), 105967. https://doi.org/10.1016/j.sysconle.2024.105967 doi: 10.1016/j.sysconle.2024.105967
    [15] Y. S. Cen, L. Cao, H. R. Ren, Y. N. Pan, Adaptive fixed-time tracking control for large-scale nonlinear systems based on improved simplified optimized backstepping strategy, ISA T., 2025. https://doi.org/10.1016/j.isatra.2024.12.050 doi: 10.1016/j.isatra.2024.12.050
    [16] S. B. Ji, B. H. Thai, S. J. Yoo, W. K. Youn, A novel fuzzy adaptive finite-time extended state observer based robust control for an autonomous underwater vehicle subject to external disturbances and measurement noises, Ocean Eng., 318 (2025), 120141. https://doi.org/10.1016/j.oceaneng.2024.120141 doi: 10.1016/j.oceaneng.2024.120141
    [17] X. M. Wang, B. Niu, X. D. Zhao, G. D. Zong, T. T. Cheng, B. Li, Command-filtered adaptive fuzzy finite-time tracking control algorithm for flexible robotic manipulator: a singularity-free approach, IEEE T. Fuzzy Syst., 32 (2024), 409–419. https://doi.org/10.1109/TFUZZ.2023.3298367 doi: 10.1109/TFUZZ.2023.3298367
    [18] Y. Liu, H. G. Zhang, J. Y. Sun, Y. C. Wang, Event-triggered adaptive finite-time containment control for fractional-order nonlinear multiagent systems, IEEE T. Cybernetics, 54 (2024), 1250–1260. https://doi.org/10.1109/TCYB.2022.3208124 doi: 10.1109/TCYB.2022.3208124
    [19] Y. K. Xie, Q. Ma, C. K. Ahn, Finite-time adaptive tracking control for output-constrained nonlinear systems: an improved command filter approach, IEEE T. Syst. Man Cy. -S., 54 (2024), 6103–6112. https://doi.org/10.1109/TSMC.2024.3417977 doi: 10.1109/TSMC.2024.3417977
    [20] Y. M. Li, K. W. Li, S. C. Tong, Reinforcement learning-based adaptive finite-time performance constraint control for nonlinear systems, IEEE T. Syst. Man Cy. -S., 54 (2024), 1335–1344. https://doi.org/10.1109/TSMC.2023.3325959 doi: 10.1109/TSMC.2023.3325959
    [21] W. Chu, C. F. Li, Y. Zhou, A rapid stabilization method of the flexible inverted pendulum based on constrained boundary circumferential motion, Mech. Syst. Signal Pr., 187 (2023), 109895. https://doi.org/10.1016/j.ymssp.2022.109895 doi: 10.1016/j.ymssp.2022.109895
    [22] N. Wang, C. J. Qian, Z. Y. Sun, Global asymptotic output tracking of nonlinear second-order systems with power integrators, Automatica, 80 (2017), 156–161. https://doi.org/10.1016/j.automatica.2017.02.026 doi: 10.1016/j.automatica.2017.02.026
    [23] J. G. Romero, A. Donaire, R. Ortega, P. Borja, Global stabilisation of underactuated mechanical systems via PID passivity-based control, Automatica, 96 (2018), 178–185. https://doi.org/10.1016/j.automatica.2018.06.040 doi: 10.1016/j.automatica.2018.06.040
    [24] H. Q. Wang, J. W. Ma, H. G. Zhang, Adaptive neural tracking control for high-order nonlinear systems with unmodeled-dynamics and sensor-fault, IEEE T. Circuits-Ⅱ, 71 (2024), 1201–1205. https://doi.org/10.1109/TCSII.2023.3325561 doi: 10.1109/TCSII.2023.3325561
    [25] X. F. Deng, L. Guo, R. Z. Li, Adaptive fault-tolerant control of high-order nonlinear delay systems under unknown dead-zone fault and unknown control coefficients and its application, Int. J. Robust Nonlin., 2025. https://doi.org/10.1002/rnc.7811 doi: 10.1002/rnc.7811
    [26] Y. Gao, W. Sun, X. P. Xie, Adaptive fuzzy prescribed-time control of high-order nonlinear systems with actuator faults, Inform. Sciences, 667 (2024), 120484. https://doi.org/10.1016/j.ins.2024.120484 doi: 10.1016/j.ins.2024.120484
    [27] M. L. Lv, B. D. Schutter, J. D. Cao, S. Baldi, Adaptive prescribed performance asymptotic tracking for high-order odd-rational-power nonlinear systems, IEEE T. Automat. Contr., 68 (2023), 1047–1053. https://doi.org/10.1109/TAC.2022.3147271 doi: 10.1109/TAC.2022.3147271
    [28] Y. Jiang, Z. Guo, Dynamic event-triggered tracking control for high-order nonlinear systems with time-varying irregular full-state constraints and input saturation, ISA T., 156 (2025), 188–201. https://doi.org/10.1016/j.isatra.2024.11.015 doi: 10.1016/j.isatra.2024.11.015
    [29] H. Li, C. C. Hua, K. Li, Q. D. Li, Finite-time control of high-order nonlinear random systems using state triggering signals, IEEE T. Circuits-Ⅰ, 70 (2023), 2587–2598. https://doi.org/10.1109/TCSI.2023.3257868 doi: 10.1109/TCSI.2023.3257868
    [30] Z. Y. Sun, Y. R. Peng, C. Y. Wen, C. C. Chen, Fast finite-time adaptive stabilization of high-order uncertain nonlinear system with an asymmetric output constraint, Automatica, 121 (2020), 109170. https://doi.org/10.1016/j.automatica.2020.109170 doi: 10.1016/j.automatica.2020.109170
    [31] Z. Y. Sun, C. Q. Zhou, C. C. Chen, Q. H. Meng, Fast finite-time adaptive stabilization of high-order uncertain nonlinear systems with output constraint and zero dynamics, Inform. Sciences, 514 (2020), 571–586. https://doi.org/10.1016/j.ins.2019.11.006 doi: 10.1016/j.ins.2019.11.006
    [32] Y. M. Li, J. Hu, T. T. Yang, Y. L. Fan, Global finite-time stabilization of switched high-order rational power nonlinear systems, Nonlinear Anal. -Hybri., 40 (2021), 101007. https://doi.org/10.1016/j.nahs.2020.101007 doi: 10.1016/j.nahs.2020.101007
    [33] X. F. Deng, C. Zhang, Y. Ge, Adaptive neural network dynamic surface control of uncertain strict-feedback nonlinear systems with unknown control direction and unknown actuator fault, J. Franklin I., 359 (2022), 4054–4073. https://doi.org/10.1016/j.jfranklin.2022.04.010 doi: 10.1016/j.jfranklin.2022.04.010
    [34] S. Huang, G. D. Zong, N. Zhao, X. D. Zhao, A. M. Ahmad, Performance recovery-based fuzzy robust control of networked nonlinear systems against actuator fault: a deferred actuator-switching method, Fuzzy Set. Syst., 480 (2024), 108858. https://doi.org/10.1016/j.fss.2024.108858 doi: 10.1016/j.fss.2024.108858
    [35] F. L. Jia, J. Huang, X. He, Predefined-time fault-tolerant control for a class of nonlinear systems with actuator faults and unknown mismatched disturbances, IEEE T. Autom. Sci. Eng., 21 (2024), 3801–3815. https://doi.org/10.1109/TASE.2023.3286663 doi: 10.1109/TASE.2023.3286663
    [36] C. Chen, J. H. Li, H. M. Wang, An observer-based approach to adaptive tracking for switched strict-feedback nonlinear systems with state quantization and sensor faults, J. Franklin I., 361 (2024), 107309. https://doi.org/10.1016/j.jfranklin.2024.107309 doi: 10.1016/j.jfranklin.2024.107309
    [37] H. Khebbache, A. Benmicia, S. Labiod, N. Bounar, A. Boulkroune, Composite adaptive exponential tracking control for large-scale nonlinear systems with sensor faults, Appl. Math. Comput., 475 (2024), 128743. https://doi.org/10.1016/j.amc.2024.128743 doi: 10.1016/j.amc.2024.128743
    [38] F. Shojaei, M. M. Arefi, A. Khayatian, H. R. Karimi, Observer-based fuzzy adaptive dynamic surface control of uncertain nonstrict feedback systems with unknown control direction and unknown dead-zone, IEEE T. Syst. Man Cy. -S., 49 (2019), 2340–2351. https://doi.org/10.1109/TSMC.2018.2852725 doi: 10.1109/TSMC.2018.2852725
    [39] S. Liu, H. G. Zhang, H. B. Pang, Adaptive fuzzy fixed-time control for uncertain switched nonlinear systems with non-symmetrical dead-zone, Fuzzy Set. Syst., 498 (2025), 109119. https://doi.org/10.1016/j.fss.2024.109119 doi: 10.1016/j.fss.2024.109119
    [40] H. Ma, H. J. Liang, Q. Zhou, C. K. Ahn, Adaptive dynamic surface control design for uncertain nonlinear strict-feedback systems with unknown control direction and disturbances, IEEE T. Syst. Man Cy. -S., 49 (2019), 506–515. https://doi.org/10.1109/TSMC.2018.2855170 doi: 10.1109/TSMC.2018.2855170
    [41] J. S. Zhao, Y. Q. Gu, X. P. Xie, D. X. Yu, Actor-critic-disturbance reinforcement learning algorithm-based fast finite-time stability of multiagent systems, Inform. Sciences, 699 (2025), 121802. https://doi.org/10.1016/j.ins.2024.121802 doi: 10.1016/j.ins.2024.121802
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(52) PDF downloads(12) Cited by(0)

Article outline

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog