In this paper, we dealt with the tracking control problem of a class of fractional-order uncertain systems with time delays. In order to handle the effects brought by the uncertainties, external disturbances, time-delay terms, and to overcome the obstacles caused by inputs saturation, the tracking controller, which consisted of linear control law, nonlinear law, and robust control law proposed in this paper, was designed by combining the composite nonlinear feedback control method and the properties of fractional order operators. Furthermore, the validation of this tracking controller was proved.
Citation: Guijun Xing, Huatao Chen, Zahra S. Aghayan, Jingfei Jiang, Juan L. G. Guirao. Tracking control for a class of fractional order uncertain systems with time-delay based on composite nonlinear feedback control[J]. AIMS Mathematics, 2024, 9(5): 13058-13076. doi: 10.3934/math.2024637
In this paper, we dealt with the tracking control problem of a class of fractional-order uncertain systems with time delays. In order to handle the effects brought by the uncertainties, external disturbances, time-delay terms, and to overcome the obstacles caused by inputs saturation, the tracking controller, which consisted of linear control law, nonlinear law, and robust control law proposed in this paper, was designed by combining the composite nonlinear feedback control method and the properties of fractional order operators. Furthermore, the validation of this tracking controller was proved.
[1] | R. L. Bagley, R. A. Calico, Fractional order state equations for the control of viscoelasticallydamped structures, J. Guid. Control Dynam., 14 (1991), 304–311. https://doi.org/10.2514/3.20641 doi: 10.2514/3.20641 |
[2] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999. https://doi.org/10.1016/s0076-5392(99)x8001-5 |
[3] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[4] | K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194 |
[5] | A. Loverro, Fractional calculus: History, definitions and applications for the engineer, 2004. |
[6] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, New York: Elsevier, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0 |
[7] | J. S. Bardi, The calculus wars: Newton, Leibniz, and the greatest mathematical clash of all time, New York: Thunder's Mouth Press, 2006. |
[8] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[9] | Y. Di, J. X. Zhang, X. Zhang, Robust stabilization of descriptor fractional-order interval systems with uncertain derivative matrices, Appl. Math. Comput., 453 (2023), 128076. https://doi.org/10.1016/j.amc.2023.128076 doi: 10.1016/j.amc.2023.128076 |
[10] | Z. Ma, H. Ma, Adaptive fuzzy backstepping dynamic surface control of strict-feedback fractional-order uncertain nonlinear systems, IEEE. T. Fuzzy. Syst., 28 (2019), 122–133. https://doi.org/10.1109/TFUZZ.2019.2900602 doi: 10.1109/TFUZZ.2019.2900602 |
[11] | H. L. Li, J. Cao, C. Hu, H. Jiang, F. E. Alsaadi, Synchronization analysis of discrete-time fractional-order quaternion-valued uncertain neural networks, IEEE. T. Neur. Net. Lear., 2023. https://doi.org/10.1109/TNNLS.2023.3274959 doi: 10.1109/TNNLS.2023.3274959 |
[12] | H. Delavari, R. Ghaderi, A. Ranjbar, S. Momani, Fuzzy fractional order sliding mode controller for nonlinear systems, Commun. Nolinear Sci., 15 (2010), 963–978. https://doi.org/10.1016/j.cnsns.2009.05.025 doi: 10.1016/j.cnsns.2009.05.025 |
[13] | J. Jiang, H. Chen, D. Cao, J. L. Guirao, The global sliding mode tracking control for a class of variable order fractional differential systems, Chaos Solition Fract., 154 (2022), 111674. https://doi.org/10.1016/j.chaos.2021.111674 doi: 10.1016/j.chaos.2021.111674 |
[14] | S. Ladaci, J. J. Loiseau, A. Charef, Fractional order adaptive high-gain controllers for a class of linear systems, Commun. Nolinear Sci., 13 (2008), 707–714. https://doi.org/10.1016/j.cnsns.2006.06.009 doi: 10.1016/j.cnsns.2006.06.009 |
[15] | I. Petráš, Fractional-order feedback control of a dc motor, J. Electr. Eng., 60 (2009), 117–128. |
[16] | H. Delavari, H. Heydarinejad, Fractional-order backstepping sliding-mode control based on fractional-order nonlinear disturbance observer, J. Comput. Nonlinear Dynam., 13 (2018), 111009. https://doi.org/10.1115/1.4041322 doi: 10.1115/1.4041322 |
[17] | N. Bigdeli, H. A. Ziazi, Finite-time fractional-order adaptive intelligent backstepping sliding mode control of uncertain fractional-order chaotic systems, J. Fanklin Inst., 354 (2017), 160–183. https://doi.org/10.1016/j.jfranklin.2016.10.004 doi: 10.1016/j.jfranklin.2016.10.004 |
[18] | X. Li, C. Wen, Y. Zou, Adaptive backstepping control for fractional-order nonlinear systems with external disturbance and uncertain parameters using smooth control, IEEE Trans. Syst. Man Cybern., 51 (2020), 7860–7869. https://doi.org/10.1109/TSMC.2020.2987335 doi: 10.1109/TSMC.2020.2987335 |
[19] | J. Jiang, H. Li, K. Zhao, D. Cao, J. L. Guirao, Finite time stability and sliding mode control for uncertain variable fractional order nonlinear systems, Adv. Differ. Equ., 2021 (2021), 127. https://doi.org/10.1186/s13662-021-03286-z doi: 10.1186/s13662-021-03286-z |
[20] | J. Jiang, X. Xu, K. Zhao, J. L. Guirao, T. Saeed, H. Chen, The tracking control of the variable-order fractional differential systems by time-varying sliding-mode control approach, Fractal Fract., 6 (2022), 231. https://doi.org/10.3390/fractalfract6050231 doi: 10.3390/fractalfract6050231 |
[21] | M. Karami, A. Kazemi, R. Vatankhah, A. Khosravifard, Adaptive fractional-order backstepping sliding mode controller design for an electrostatically actuated size-dependent microplate, J. Vib. Control, 27 (2021), 1353–1369. https://doi.org/10.1177/1077546320940916 doi: 10.1177/1077546320940916 |
[22] | E. Fridman, Introduction to time-delay systems: Analysis and control, Springer, 2014. https://doi.org/10.1007/978-3-319-09393-2 |
[23] | S. E. Hamamci, An algorithm for stabilization of fractional-order time delay systems using fractional-order pid controllers, IEEE Trans. Autom. Control, 52 (2007), 1964–1969. https://doi.org/10.1109/TAC.2007.906243 doi: 10.1109/TAC.2007.906243 |
[24] | M. P. Lazarević, A. M. Spasić, Finite-time stability analysis of fractional order time-delay systems: Gronwall's approach, Math. Comput. Model., 49 (2009), 475–481. https://doi.org/10.1016/j.mcm.2008.09.011 doi: 10.1016/j.mcm.2008.09.011 |
[25] | I. Birs, C. Muresan, I. Nascu, C. Ionescu, A survey of recent advances in fractional order control for time delay systems, IEEE Access, 7 (2019), 951–965. https://doi.org/10.1109/ACCESS.2019.2902567 doi: 10.1109/ACCESS.2019.2902567 |
[26] | Z. Y. Nie, Y. M. Zheng, Q. G. Wang, R. J. Liu, L. J. Xiang, Fractional-order pid controller design for time-delay systems based on modified bode's ideal transfer function, IEEE Access, 8 (2020), 103500–103510. https://doi.org/10.1109/ACCESS.2020.2996265 doi: 10.1109/ACCESS.2020.2996265 |
[27] | H. Min, S. Xu, Q. Ma, B. Zhang, Z. Zhang, Composite-observer-based output-feedback control for nonlinear time-delay systems with input saturation and its application, IEEE Trans. Ind. Electron., 65 (2017), 5856–5863. https://doi.org/10.1109/TIE.2017.2784347 doi: 10.1109/TIE.2017.2784347 |
[28] | Y. Wu, X. J. Xie, Adaptive fuzzy control for high-order nonlinear time-delay systems with full-state constraints and input saturation, IEEE Trans. Fuzzy Syst., 28 (2019), 1652–1663. https://doi.org/10.1109/TFUZZ.2019.2920808 doi: 10.1109/TFUZZ.2019.2920808 |
[29] | H. Min, S. Xu, B. Zhang, Q. Ma, Output-feedback control for stochastic nonlinear systems subject to input saturation and time-varying delay, IEEE Trans. Autom. Control, 64 (2018), 359–364. https://doi.org/10.1109/TAC.2018.2828084 doi: 10.1109/TAC.2018.2828084 |
[30] | Y. Y. Cao, Z. Lin, T. Hu, Stability analysis of linear time-delay systems subject to input saturation, IEEE Trans. Circuits Syst. I, 49 (2002), 233–240. https://doi.org/10.1109/81.983870 doi: 10.1109/81.983870 |
[31] | S. Xu, G. Feng, Y. Zou, J. Huang, Robust controller design of uncertain discrete time-delay systems with input saturation and disturbances, IEEE Trans. Autom. Control, 57 (2012), 2604–2609. https://doi.org/10.1109/TAC.2012.2190181 doi: 10.1109/TAC.2012.2190181 |
[32] | Z. Lin, M. Pachter, S. Banda, Toward improvement of tracking performance nonlinear feedback for linear systems, Int. J. Control, 70 (1998), 1–11. https://doi.org/10.1080/002071798222433 doi: 10.1080/002071798222433 |
[33] | S. Mobayen, F. Tchier, Composite nonlinear feedback control technique for master/slave synchronization of nonlinear systems, Nonlinear Dynam., 87 (2017), 1731–1747. https://doi.org/10.1007/s11071-016-3148-8 doi: 10.1007/s11071-016-3148-8 |
[34] | B. M. Chen, T. H. Lee, K. Peng, V. Venkataramanan, Composite nonlinear feedback control for linear systems with input saturation: Theory and an application, IEEE Trans. Autom. Control, 48 (2003), 427–439. https://doi.org/10.1109/TAC.2003.809148 doi: 10.1109/TAC.2003.809148 |
[35] | D. Lin, W. Lan, M. Li, Composite nonlinear feedback control for linear singular systems with input saturation, Syst. Control Lett., 60 (2011), 825–831. https://doi.org/10.1016/j.sysconle.2011.06.006 doi: 10.1016/j.sysconle.2011.06.006 |
[36] | Y. He, B. M. Chen, C. Wu, Composite nonlinear control with state and measurement feedback for general multivariable systems with input saturation, Syst. Control Lett., 54 (2005), 455–469. https://doi.org/10.1016/j.sysconle.2004.09.010 doi: 10.1016/j.sysconle.2004.09.010 |
[37] | E. Jafari, T. Binazadeh, Observer-based improved composite nonlinear feedback control for output tracking of time-varying references in descriptor systems with actuator saturation, ISA Trans., 91 (2019), 1–10. https://doi.org/10.1016/j.isatra.2019.01.035 doi: 10.1016/j.isatra.2019.01.035 |
[38] | S. Mondal, C. Mahanta, Composite nonlinear feedback based discrete integral sliding mode controller for uncertain systems, Commun. Nonlinear Sci., 17 (2012), 1320–1331. https://doi.org/10.1016/j.cnsns.2011.08.010 doi: 10.1016/j.cnsns.2011.08.010 |
[39] | E. Jafari, T. Binazadeh, Low-conservative robust composite nonlinear feedback control for singular time-delay systems, J. Vib. Control, 27 (2021), 2109–2122. https://doi.org/10.1177/1077546320953736 doi: 10.1177/1077546320953736 |
[40] | V. Ghaffari, An improved control technique for designing of composite non-linear feedback control in constrained time-delay systems, IET Control Theory Appl., 15 (2021), 149–165. https://doi.org/10.1049/cth2.12018 doi: 10.1049/cth2.12018 |
[41] | Z. Sheng, Q. Ma, Composite-observer-based sampled-data control for uncertain upper-triangular nonlinear time-delay systems and its application, Int. J. Robust Nonlinear Control, 31 (2021), 6699–6720. https://doi.org/10.1002/rnc.5637 doi: 10.1002/rnc.5637 |
[42] | S. Mobayen, Robust tracking controller for multivariable delayed systems with input saturation via composite nonlinear feedback, Nonlinear Dyn., 76 (2014), 827–838. https://doi.org/10.1007/s11071-013-1172-5 doi: 10.1007/s11071-013-1172-5 |
[43] | S. Rasoolinasab, S. Mobayen, A. Fekih, P. Narayan, Y. Yao, A composite feedback approach to stabilize nonholonomic systems with time varying time delays and nonlinear disturbances, ISA Trans., 101 (2020), 177–188. https://doi.org/10.1016/j.isatra.2020.02.009 doi: 10.1016/j.isatra.2020.02.009 |
[44] | H. Wu, Robust tracking and model following control with zero tracking error for uncertain dynamical systems, J. Optim. Theory Appl., 107 (2000), 169–182. https://doi.org/10.1023/A:1004665018593 doi: 10.1023/A:1004665018593 |
[45] | F. Zhang, The Schur complement and its applications, New York: Springer, 2005. https://doi.org/10.1007/b105056 |
[46] | N. Aguila-Camacho, M. A. Duarte-Mermoud, J. A. Gallegos, Lyapunov functions for fractional order systems, Commun. Nonlinear Sci., 19 (2014), 2951–2957. https://doi.org/10.1016/j.cnsns.2014.01.022 doi: 10.1016/j.cnsns.2014.01.022 |
[47] | M. A. Duarte-Mermoud, N. Aguila-Camacho, J. A. Gallegos, R. Castro-Linares, Using general quadratic lyapunov functions to prove lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci., 22 (2015), 650–659. https://doi.org/10.1016/j.cnsns.2014.10.008 doi: 10.1016/j.cnsns.2014.10.008 |
[48] | J. Jiang, D. Cao, H. Chen, Sliding mode control for a class of variable-order fractional chaotic systems, J. Fanklin Inst., 357 (2020), 10127–10158. https://doi.org/10.1016/j.jfranklin.2019.11.036 doi: 10.1016/j.jfranklin.2019.11.036 |
[49] | Y. Li, Y. Chen, I. Podlubny, Mittag-leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965–1969. https://doi.org/10.1016/j.automatica.2009.04.003 doi: 10.1016/j.automatica.2009.04.003 |
[50] | Z. Wu, Y. Xia, X. Xie, Stochastic barbalat's lemma and its applications, IEEE Trans. Autom. Control, 57 (2011), 1537–1543. https://doi.org/10.1109/TAC.2011.2175071 doi: 10.1109/TAC.2011.2175071 |
[51] | D. Lin, W. Lan, Output feedback composite nonlinear feedback control for singular systems with input saturation, J. Fanklin Inst., 352 (2015), 384–398. https://doi.org/10.1016/j.jfranklin.2014.10.018 doi: 10.1016/j.jfranklin.2014.10.018 |
[52] | S. Mobayen, Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control, ISA Trans., 77 (2018), 100–111. https://doi.org/10.1016/j.isatra.2018.03.026 doi: 10.1016/j.isatra.2018.03.026 |
[53] | S. Mobayen, F. Tchier, Composite nonlinear feedback integral sliding mode tracker design for uncertain switched systems with input saturation, Commun. Nonlinear Sci., 65 (2018), 173–184. https://doi.org/10.1016/j.cnsns.2018.05.019 doi: 10.1016/j.cnsns.2018.05.019 |