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1. Introduction

There are many studies on fractional calculus and related topics [1–8], such as Podlubny [2] who
talked about several classical definitions of fractional order operators; Miller [5] introduced the general
theory of fractional differential equations; a new fractional derivatives with nonlocal and non-singular
kernel were created by Atangana and Baleanu [8], to name but a few. In recent years, relying on
the fact that many complex phenomenon can be simplified and accurately described by fractional-
order operators, fractional-order systems have attracted great attention in applied sciences [9–11].
The control problem is one of the important issues in theory and applications of fractional order
systems. Recently, varieties of fractional-order control methods have been designed, such as sliding
mode control [12, 13], adaptive control [14], feedback control [15], and so on. It is mentioned that
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the sliding mode control method can effectively ensure the stability and robustness of a nonlinear
fractional order system; alternatively, it can switch the motion to the sliding mode surface through the
switching control law, so as to ensure rapid response and robustness. In addition, the combinations
of several controllers are effective ways to achieve better control effects by taking the advantages
of different control methods [16–21]. However, to our best knowledge, there are few results on the
tracking control of fractional-order systems based on the composite nonlinear feedback (CNF) control
method, particularly for systems with time delays and actuator saturation constraints. On the other
hand, due to the presence of uncertainties and external disturbances in the system, it is necessary
to identify unknown nonlinear terms, which should be compensated in the process of designing the
controller. Furthermore, the time delays bring some obstacles in designing the controller and proving
the stability.

The systems with time delays are basic mathematical models to describe the practical problems,
for example, chemical reaction, mechanical vibration, power system, and so on (for more details, one
can refer to Ref. [22]). When the control problems for systems with time delays are considered, the
time delays lead to the complex of designing control and the proof for the system controlled (for
more details, see [23–26]). In addition, the phenomenon of actuator saturation usually happens in
controlled systems. Usually, the input saturations restrict the system’s performance, which result
in the inaccuracies and instabilities of the system considered. To deal with control problems for
the time-delay system with actuator saturation, many control methods have been developed [27–29].
In Ref. [30], a class of linear systems with input saturation constraints and time delay is studied,
and Lyapunov-Razumihkin and Lyapunov-Krasovskii functional approaches are used to analyze the
domain of attraction problem and stability problem of the system. In [31], a state feedback controller
design method was proposed for a class of uncertain discrete time-delay systems with control input
saturation and bounded external disturbances, which guarantee the trajectories of systems to converge
to the desired state.

In the above control methods, most of the control inputs depend on the sign function, which results
in that the control law is not smooth. In order to improve the transient performance of the tracking
ability of the closed-loop system, the composite nonlinear feedback control method was established
in [32], and developed by Mobayen and Tchier [33], Chen et al. [34], Lin et al. [35], He et al. [36],
and so on. The CNF control method is often used to deal with tracking control problems of systems
with input saturation and it can improve the transient performance of the closed-loop system while
maintaining a small overshoot or no overshoot. Jafari et al. [37] designed a CNF controller based
on a disturbance observer, which can effectively guarantee the tracking performance of the system.
Based on the CNF control method, a discrete integral sliding mode controller, which can produce the
superior transient performance, was proposed by Mondal S. et al. [38]. In Ref. [39], employing the
CNF control method, Jafari et al. considered the control problem for the system with a singular time
delay. In terms of the CNF control method, a novel controller for nonlinear time-delay systems with
saturation constraints was given by Ghaffari et al. [40]. For more details, one can refer to [41–43] and
the references therein. It must be mentioned that most investigations that considering control problems
for differential systems by the CNF control method were focused on the integer order differential
systems with time delay. Thus, it is necessary to develop composite nonlinear feedback control to deal
with the control problem for fractional-order systems.

Relying on CNF control methods, we consider the control problems for fractional-order uncertain
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systems with time delay and external disturbances. The rest of the paper is organized as follows. In
Section 2, we describe the fractional-order system investigated in this paper. Section 3 is devoted to
give the major results and the associated proofs.

2. Preliminaries and system formulation

The following are the definitions of Caputo-fractional order derivative adopted in this paper.

Definition 2.1. [2] For a continuous function x(t) : [0,∞) → R, the Caputo-type fractional order
derivative with the order α of the function x(t) is defined as

C

0D
α

t x(t) =
1

Γ(1 − α)

∫ t

0
(t − s)−αx′(s)ds, 0 < α < 1.

Definition 2.2. [2] The Caputo-type fractional integral with the order α of function x(t) is defined as

0Iαt x(t) =
1
Γ(α)

∫ t

0
(t − s)α−1x(s)ds, 0 < α < 1.

Some properties of fractional calculus operators are introduced as follows.

Proposition 2.1. [16] Let x ∈ Ck[a, b] for some a < b and some k ∈ N. Moreover, let n, ε > 0 such
that there exists some ℓ ∈ N with ℓ ≤ k and n, n + ε ∈ [ℓ − 1, ℓ]. Then,

C

0D
ε

t (
C

0D
n

t x(t)) =
C

0D
ε+n

t x(t).

Proposition 2.2. [2] If the Caputo fractional differential
C

0D
α

t x(t) is integrable, then

0I
α

t (
C

0D
α

t x(t)) = x(t) − x(0),

if the function x(t) ∈ C1[0, t], and 0 < α < 1.

Consider the following multi-input and multi-output fractional-order uncertain system with actuator
saturation 

C

0D
α

t x(t) = (A + ∆A(ν(t)))x(t) + Ā(ς(t))x(t − τ(t)) + (B
+ ∆B(σ(t)))sat(u(t)) + D(θ(t)),

y(t) = Cx(t), 0 < t < +∞,
(2.1)

where x(t) ∈ Rn, y(t) ∈ Rm, m < n and u(t) ∈ Rn are the system state vector, the system output
vector and the control input vector respectively. The matrix A denotes the system matrix, B is the input
matrix and C represents the output matrix, they are both the constant matrices with the appropriate
dimensions. τ(t) ∈ R+ is the time delay. The terms ∆A(·) and ∆B(·) represent the uncertainties of the
system, and D(·) denotes the perturbation, the uncertain terms ν(·) : R+ → D, σ(·) : R+ → D and
θ(·) : R+ → D are Lebesgue measurable functions, where D is a compact bounded set.

The control input vector is constrained by a saturation function sat : Rn → Rn with the following
form

sat(u(t)) =


sat(u1(t))
sat(u2(t))
...

sat(un(t))

 , (2.2)
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where the operator
sat(ui(t)) = sign(ui(t))min(|ui|, ūi), i = 1, 2, · · · , n, (2.3)

and ūi represents the saturation level of the i-th control channel.
The objective in this paper is to derive the composite controller u(t), which leads to the output vector

y(t) of the system (2.1) can track the output vector yr(t) of the reference system rapidly and smoothly.
The reference system is defined as following{ C

0D
α

t xr(t) = Ar xr(t),
yr(t) = Cr xr(t),

(2.4)

where Ar ∈ Rn×n and Cr ∈ Rn×n are both constant matrices. xr(t) ∈ Rn denotes the reference state vector
and yr(t) ∈ Rm is the reference output vector. For the purposes of the tracking control, it is required that
there exists a constant d > 0 such that ||xr(t)|| ⩽ d for all t ⩾ 0.

It is turned to list some hypothesises about the system (2.1) and system (2.4).
Hypothesis 2.1. There exist two constant matrices G and H which satisfy[

A B
C 0

] [
G
H

]
=

[
GAr

Cr

]
. (2.5)

Moreover, for any positive-definite matrix Q ∈ Rn×n, there exists an unique positive-definite matrix
P ∈ Rn×n satisfying the following Riccati algebraic equation [44]

AT P + PA − ηPBBT P = −Q. (2.6)

Hypothesis 2.2. The fractional derivative of the unknown time delay τ(t) is bounded, which means
there is a positive constant ϑ such that |

C

0D
α

t τ| ⩽ ϑ. Furthermore, suppose ϑ < 1.
Hypothesis 2.3. The matrices ∆A(ν(t)), ∆B(σ(t)) and D(θ(t)) are matched, and there exist continuous
and bounded functions N1(·), N2(·) and N3(·) with the boundary

ρ1 = max
ν∈D
∥N1(ν)∥,

ρ2 = max
σ∈D
∥N2(σ)∥,

ρ3 = max
θ∈D
∥N3(θ)∥,

(2.7)

such that
∆A(ν(t)) = BN1(ν),
∆B(σ(t)) = BN2(σ),
D(θ(t)) = BN3(θ).

(2.8)

Moreover, assume the time-delay matrix Ā is matched and

Ā(ς) = BN̄. (2.9)

Hypothesis 2.4. The pair {A, B} from the system (2.1) is completely controllable.
The next lemma is very important in deriving the main results of this paper.
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Lemma 2.1. [45] (Schur Complement) The following LMI condition[
F11(t) F12(t)
F21(t) F22(t)

]
< 0 (2.10)

holds if and only if {
F22(t) < 0,
F11(t) − F12(t)F−1

22 (t)FT
21(t) < 0,

or is equivalent to {
F11(t) < 0,
F22(t) − F21(t)F−1

11 (t)FT
12(t) < 0,

where F11(t) = FT
11(t), F12(t) = FT

21(t) and F22(t) = FT
22(t).

3. Main results

This section is devoted to obtain the main results and the proof associated. Initially, we transform
the system (2.1) to the error system.

3.1. Model transformation and associated stability results

Consider the following tracking error vector e(t) and the auxiliary state vector defined by

e(t) = y(t) − yr(t), (3.1)

and
x̃(t) = x(t) −Gxr(t), (3.2)

where the matrix G satisfies the Hypothesis 2.1. Thus, combining the system (2.1) with the reference
system (2.4) gives

e(t) = C(x(t) −Gxr(t)) = Cx̃(t), (3.3)

then
∥e(t)∥ = ∥Cx̃(t)∥ ⩽ ∥C∥∥x̃(t)∥, (3.4)

which implies that
lim

t→+∞
∥e(t)∥ ⩽ lim

t→+∞
∥x̃(t)∥.

Thus, we obtain lim
t→+∞
∥e(t)∥ = 0 when lim

t→+∞
∥x̃(t)∥ = 0, which means that ∥x̃(t)∥ → 0 with t → ∞ can

guarantee the output y(t) can be forced to track the reference output yr(t) asymptotically.
The following Lemmas and Definitions are very important to obtain the main results in this paper.

Lemma 3.1. [46] Suppose x(t) is continuously differentiable function, then, for any time variable
t ⩾ 0, the following inequality holds

1
2

C

0D
α

t x2(t) ⩽ x(t)(
C

0D
α

t x(t)), 0 < α < 1.
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Lemma 3.2. [47] Let x(t) be a vector and xT (t)Px(t) is continuously differentiable function for any
symmetric matrix P, then, for each time t ⩾ 0, the following can be obtained.

1
2

C

0D
α

t (xT (t)Px(t)) ⩽ xT (t)P(
C

0D
α

t x(t)),∀α ∈ (0, 1] ,∀t ⩾ 0.

Definition 3.1. [48] If the continuous function α(·) : [0, t)→ [0,∞) is strictly increasing and α(0) = 0,
then, it belongs to K−class function.

Lemma 3.3. [49] (Fractional order Mittag-Leffer asymptotical stability) Let x = 0 be an equilibrium
point of the fractional system (2.1). Assume that there exists a Lyapunov function V(x(t)) and K−class
functions αi(·)(i = 1, 2, 3) satisfying

α1(∥x(t)∥) ⩽ V(x(t)) ⩽ α2(∥x(t)∥),
C

0D
α

t V(x(t)) ⩽ −α3(∥x(t)∥),

where 0 < α ⩽ 1. Then, the equilibrium point of system (2.1) is asymptotically stable.

Lemma 3.4. [50] (Integer-order Barbalat’s Lemma) If η : R → R is a uniformly continuous function
for t ⩾ 0 and lim

t→∞

∫ t

0
η(ω)dω, 0 < q < 1 exists and is finite, then lim

t→∞
η(t) = 0.

3.2. The design of composite nonlinear tracking control

The objective in this part is to design a tracking control law based on the CNF control approach
without large overshoot and unfavorable actuator saturation effect.

The process of the controller design can be divided into the following four steps.

(1) The design of a linear state feedback controller.

(2) The design of a nonlinear feedback controller.

(3) The design of a robust tracking controller.

(4) The design for the CNF controller needed.

The exact process is as following.
Step 1: The linear feedback controller is designed as

uL(t) = Fx(t) + (H − FG)xr(t) (3.5)
= Fx̃(t) + Hxr(t),

where F represents a gain matrix which is determined later. The linear part can ensure the closed-loop
system possesses the properties of fast response and enough small damping ratio.
Step 2: The nonlinear feedback controller is expressed as

uN(t) = µ(t)BT Px̃(t), (3.6)

where P is a positive definite matrix, and

µ(t) = −
κ2(t)

κ(t)∥BT Px̃(t)∥ + ϱ(t)
, (3.7)
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where κ(t) > 0 is a function which is needed to be designed and the bounded function ϱ(t) is an any
non-negative and uniform continuous function. Moreover, ϱ(·) satisfies

sup
t∈[0,+∞)

∫ t

0
[ϱ(x̃, s)]ds ⩽ ϱ̄, (3.8)

where ϱ̄ > 0, then one can have

lim
t→+∞

∫ t

0
[ϱ(x̃, s)]ds ⩽ ϱ̄ < +∞. (3.9)

Obviously, µ(t) formulated by (3.7) is non-positive and satisfies the local Lipschitz condition.

Remark 3.1. The value of ϱ(t) which is depended on the error signal e(t) would increase with the
output signal y(t) far from the reference signal yr(t). Moreover, the value of |µ(t)| would decrease,
which can leads to that the effect of the nonlinear part can be eliminated, and vice versa.

Step 3: Consider a fractional-order sliding mode surface as following

s(t) = k1 x̃(t) + k2(
C

0D
α

t x̃(t)) + · · · + kn(
C

0D
(n−1)α

t x̃(t))

=

n∑
i=1

ki(
C

0D
(i−1)α

t x̃(t)), (3.10)

where ki(i = 1, 2, · · · , n) is a constant row vector. Taking the fractional-order derivative with respect to
t in both sides of (3.10) implies

C

0D
α

t s(t) = k1(
C

0D
α

t x̃(t)) + k2(
C

0D
2α

t x̃(t)) + · · · + kn(
C

0D
nα

t x̃(t)) (3.11)

=

n∑
i=1

ki(
C

0D
iα

t x̃(t)).

On the other hand, when the states of the system arrive the sliding mode surface s(t), then s(t) = 0,
thus, the robust control law can be constructed as

us(t) = −
(
k1B)−1[

n∑
i=2

ki(
C

0D
iα

t x̃(t)) + k1(A + BF + µ(t)BBT P)x̃(t) + ls(t) + ksgn(s)
]
, (3.12)

where k1B is non-vanishing, and l and k are two positive constants. This robust controller can guarantee
the process of tracking for the output signal to the reference signal can not be affected by external
disturbances and uncertainties, and the tracking ability of the system can be further improved.
Step 4: The CNF controller is comprised of the linear, nonlinear and robust control laws, which are
derived in Step 1, Step 2 and Step 3 respectively, with the following form

u(t) = Fx̃(t) + Hxr(t) + µ(t)BT Px̃(t) + us(t), (3.13)

where

µ(t) = −
(ρ1(∥x̃(t)∥ + ∥Gxr(t)∥) + ρ3 + ρ2ū + 2ū + ρ̃(ū))2

(ρ1(∥x̃(t)∥ + ∥Gxr(t)∥) + ρ3 + ρ2ū + 2ū + ρ̃(ū))∥BT Px̃(t)∥ + ϱ(x̃(t))
, (3.14)

here ρ̃(ū) is a positive constant and satisfies ∥u(t)∥ ≤ ρ̃(ū).
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Remark 3.2. Because x̃(t), xr(t) and s(t) are all bounded, the input of controller formulated by (3.13)
is also bounded.

Set
ω(t) = sat(u(t)) − Fx̃(t) − Hxr(t), (3.15)

which together with (3.13) implies

ω(t) = sat(Fx̃(t) + Hxr(t) + µ(t)BT Px̃(t) + us(t)) − Fx̃(t) − Hxr(t). (3.16)

Taking the fractional-order derivative with respect to t in both sides of (3.2) along the trajectories
of (2.1) and (2.4), we can get

C

0D
α

t x̃(t) =
C

0D
α

t x(t) −G(
C

0D
α

t xr(t))
= (A + ∆A)x(t) + Āx(t − τ) + (B + ∆B)sat(u) + D −GAr xr(t)
= (A + ∆A)x̃(t) + (A + ∆A)Gxr(t) + Āx̃(t − τ) + ĀGxr(t − τ)
+(B + ∆B)sat(u) + D −GAr xr(t). (3.17)

Substituting ω(t) into (3.17) yields that
C

0D
α

t x̃(t) = (A + ∆A + BF)x̃(t) + BHxr(t) + Bω(t) + (A + ∆A)Gxr(t)
+ Āx̃(t − τ) + ĀGxr(t − τ) + D −GAr xr(t) + ∆Bsat(u)
= (A + ∆A + BF)x̃(t) + Bω(t) + Āx̃(t − τ) + ĀGxr(t − τ)
+ D + ∆AGxr(t) + ∆Bsat(u). (3.18)

Remark 3.3. The matrix A is a negative definite matrix if and only if the even order principal sub-
formula Di > 0, and the order principal sub-formula of odd order Di < 0. Then, the quadratic
f (x1, x2, · · · , xn) = XT AX is a negative quadratic.

The main results of this paper are represented by the coming Theorem 3.1.

Theorem 3.1. Consider the fractional-order uncertain system (2.1) and the reference system (2.4).
Suppose the Hypothesises 2.1, 2.2 and 2.3 hold, and for any δi ∈ (0, 1)(i = 1, 2), let cδ is the largest
positive scalar such that x̃ ∈ Xδ with Xδ = {x̃ : x̃T Px̃ ⩽ cδ}, the following inequalities hold,

∥Fx̃(t)∥ ⩽ (1 − δ1 − δ2)ū, (3.19)

∥Hxr(t)∥ ⩽ δ1ū, (3.20)

∥us(t)∥ ⩽ δ2ū. (3.21)

If there exist a matric Z > 0 with adequate dimensions, and satisfy the following condition:

Λ =

[
Λ11 PĀ
∗ −(1 − ϑ)Z

]
< 0, (3.22)

whereΛ11 = (A+BF)T P+P(A+BF)+(1−ϑ)−1P2+Z+Q+FT WF, and Q+FT WF is a positive definite
matrix. Then, under the controller formulated by (3.13), the error e(t) defined by (3.1) converges to
zero asymptotically with t → +∞.
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Proof. The whole proof is divided into four situations.

S1: The input signal is unsaturated which means the values of inputs are less than the supremum of
saturation function and more than the infimum of saturation function

S2: The values of all input channels of control are more than the supremum of saturation function.

S3: The values of input channels of control are less than he infimum of saturation function.

S4: Some of the inputs channels are unsaturated, and the others are saturated

Proof for S1. In this case, we have

|ui(t)| ⩽ ūi, i = 1, 2, · · · , n, (3.23)

then sat(u) = u(t), therefore, it can be obtained that

ω(t) = sat(Fx̃(t) + Hxr(t) + µ(t)BT Px̃(t) + us(t)) − Fx̃(t) − Hxr(t) (3.24)
= µ(t)BT Px̃(t) + us(t).

Given the following Lyapunov function

V1(x̃(t)) =
1
2

s2(t). (3.25)

Taking the fractional-order derivative with respect to t in both sides of (3.25) along the trajectories of
the sliding mode surface (3.10), which together with Lemma 3.1 yields

C

0D
α

t V1(t) ⩽ s(t)(
C

0D
α

t s(t))

= s(t)
[
k1(

C

0D
α

t x̃(t)) +
n∑

i=2

ki(
C

0D
iα

t x̃(t))
]
. (3.26)

Substituting (3.18) into (3.26) gives
C

0D
α

t V1(t) ⩽ s(t)
[
k1(A + ∆A + BF)x̃(t) + k1Bω(t) + k1Āx̃(t − τ) + k1D

+ k1ĀGxr(t − τ) + k1∆AGxr(t) + k1∆Bsat(u) +
n∑

i=2

ki(
C

0D
α

t x̃(t))
]

= s(t)
[
k1(A + ∆A + BF + ∆BF)x̃(t) + k1Āx̃(t − τ) + k1Bω(t)

+ k1µ(t)∆BBT Px̃(t) + k1χ(t) +
n∑

i=2

ki(
C

0D
α

t x̃(t))
]
,

where

χ(t) = ĀGxr(t − τ) + D + ∆AGxr(t) + ∆BHxr(t) + ∆Bus(t)
= Bξ(t), (3.27)

along with Hypothesis 2.3, we have
χ(t) = Bξ(t), (3.28)
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here
ξ(t) = N̄Gxr(t − τ) + N3 + N1Gxr(t) + N2Hxr(t) + N2us(t). (3.29)

With robust control law (3.12) and Hypothesis 2.3, from (3.24), we can get
C

0D
α

t V1(t) ⩽ s(t)
[
k1(∆A + ∆BF)x̃(t) + k1Āx̃(t − τ) + k1µ(t)∆BBT Px̃(t)

+ k1χ(t)
]
− ls2(t) − k|s(t)|

= s(t)
[
k1B(N1 + N2F)x̃(t) + k1BN̄ x̃(t − τ) + k1N2µ(t)BBT Px̃(t)

+ k1Bξ(t)
]
− ls2(t) − k|s(t)|,

then
C

0D
α

t V1(t) ⩽ |s(t)|∥k1B∥[(ρ1 + ρ2∥F∥)∥x̃(t)∥ + ∥N̄∥∥x̃(t − τ)∥
+ ρ2|µ(t)|∥BT P∥∥x̃(t)∥ + ρξ] − ls2(t) − k|s(t)|,

where ρξ = max∥ξ(t)∥.
Thus, when the system parameters satisfy the following switching condition

k ⩾ ∥k1B∥[(ρ1 + ρ2∥F∥)∥x̃(t)∥ + ∥N̄∥∥x̃(t − τ)∥ + ρ2|µ(t)|∥BT P∥∥x̃(t)∥ + ρξ],

it can be asserted that
C

0D
α

t V1(t) ⩽ −ls2(t).

Therefore, using Lemma 3.3, we can derive the equilibrium point of the system (2.1) is asymptotically
stable and the trajectories converge to the sliding surface.

Conducting the following discussion requires an alternative approach, thus, we need another
Lyapunov functional candidate as follows

V2(x̃(t), xr(t)) = 0I
1−α

t [x̃T (t)Px̃(t)] +
∫ t

t−τ
x̃T (β)Zx̃(β)dβ (3.30)

+ 0I
1−α

t [xT
r (t)Pr xr(t)] +

∫ t

t−τ
xT

r (β)GT ĀT ĀGxr(β)dβ,

where the matrix Z and Pr are positive definite which can be determined later.
Taking derivative in both sides of (3.30), along with Hypothesis 2.2, we can find

V̇2(t) ⩽ [
C

0D
α

t x̃(t)]T Px̃(t) + x̃T (t)P(
C

0D
α

t x̃(t)) + x̃T (t)Zx̃(t) + [
C

0D
α

t xr(t)]T Pr xr(t)

− (1 − ϑ)x̃T (t − τ)Zx̃(t − τ) + xT
r (t)Pr(

C

0D
α

t xr(t)) + xT
r (t)GT ĀT ĀGxr(t)

− (1 − ϑ)xT
r (t − τ)GT ĀT ĀGxr(t − τ).

According to (2.4) and (3.18), we have

V̇2(t) ⩽ x̃T (t)[(A + ∆A + BF)T P + P(A + ∆A + BF) + Z]x̃(t)
+x̃T (t − τ)ĀT Px̃(t) + x̃T (t)PĀx̃(t − τ) + xT

r (t − τ)GT ĀT Px̃(t)
+x̃T (t)PĀGxr(t − τ) + xT

r (t)GT∆AT Px̃(t) + x̃T (t)P∆AGxr(t)
+ωT (t)BT Px̃(t) + x̃T (t)PBω(t) + DT Px̃(t) + [sat(u)]T∆BT Px̃(t)
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+x̃T (t)P∆Bsat(u) + x̃T (t)PD − (1 − ϑ)x̃T (t − τ)Zx̃(t − τ)
+xT

r (t)PrAr xr(t) − (1 − ϑ)xT
r (t − τ)GT ĀT ĀGxr(t − τ)

+[Ar xr(t)]T Pr xr(t) + xT
r (t)GT ĀT ĀGxr(t), (3.31)

together with the Hypothesis 2.3, we get

h(t) = D + ∆AGxr(t) + ∆Bsat(u)
= Bγ(t), (3.32)

where
γ(t) = N1Gxr(t) + N2sat(u) + N3.

Since, for any given ε > 0, the following holds

MTN +NTM ⩽ εMTM + ε−1NTN ,

whereM and N are any matrices with the appropriate dimensions, then we have

xT
r (t − τ)GT ĀT Px̃(t) + x̃T (t)PĀGxr(t − τ) (3.33)

⩽εx̃T (t)P2 x̃(t) + ε−1xT
r (t − τ)GT ĀT ĀGxr(t − τ).

Employing the inequality (3.33), the inequality (3.31) can be written as

V̇2(t) ⩽ x̃T (t)[(A + BF)T P + P(A + BF) + εP2 + Z]x̃(t) + x̃T (t)PBω(t)
+ x̃T (t)PĀx̃(t − τ) + x̃T (t − τ)ĀT Px̃(t) − (1 − ϑ)x̃T (t − τ)Zx̃(t
− τ) + ε−1xT

r (t − τ)GT ĀT ĀGxr(t − τ) + xT
r (t)(AT

r Pr + PrAr

+GT ĀT ĀG)xr(t) − (1 − ϑ)xT
r (t − τ)GT ĀT ĀGxr(t − τ)

+ x̃T (t)[∆AT P + P∆A]x̃(t) + x̃T (t)Ph(t) + hT (t)Px̃(t) + ωT (t)BT Px̃(t).

Let ε = (1 − ϑ)−1, we get

V̇2(t) + x̃T (t)(Q + FT WF)x̃(t) (3.34)
≤slantx̃T (t)[(A + BF)T P + P(A + BF) + (1 − ϑ)−1P2 + Z + Q

+ FT WF]x̃(t) + x̃T (t)PĀx̃(t − τ) + x̃T (t − τ)ĀT Px̃(t) − (1 − ϑ)x̃T (t
− τ)Zx̃(t − τ) + xT

r (t)(PrAr + AT
r Pr +GT ĀT ĀG)xr(t) + x̃T (t)[∆AT P

+ P∆A]x̃(t) + x̃T (t)Ph(t) + hT (t)Px̃(t) + ωT (t)BT Px̃(t) + x̃T (t)PBω(t),

where Q and W are positive definite matrixes, and the matrix Pr satisfies the following Riccati algebraic
equation

GT ĀT ĀG + PrAr + AT
r Pr ⩽ 0.

By using the matrix inequality (3.22), the inequality (3.34) can be simplified as

V̇2(t) + x̃T (t)(Q + FT WF)x̃(t)
⩽ ΨTΛΨ + x̃T (t)[∆AT P + P∆A]x̃(t) + x̃T (t)Ph(t) + hT (t)Px̃(t)
+ωT (t)BT Px̃(t) + x̃T (t)PBω(t), (3.35)
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here Ψ = [x̃(t) x̃(t − τ)]T , and

Λ =

[
Λ11 PĀ
∗ −(1 − ϑ)Z

]
,

where Λ11 = (A + BF)T P + P(A + BF) + (1 − ϑ)−1P2 + Z + Q + FT WF.
Proof for S2. When the values of control input ui(t) of all input channels overbear their upper
boundaries, which means ui(t) ≥ ūi, then we have sat(ui) = ūi and

ρ̃i(ūi) ⩾ ui(t) = Fi x̃(t) + Hixr(t) + µ(t)Bi
T Px̃(t) + ui

s(t) ⩾ ūi,

where ρ̃i(ūi) is the maximum value of ui(t). By (2.3) and (3.16), we find

ωi(t) = ūi − Fi x̃(t) − Hixr(t). (3.36)

Using (3.19), (3.20) and (3.21), we get

Fi x̃(t) + Hixr(t) + ui
s(t) ⩽ |Fi x̃(t) + Hixr(t) + ui

s(t)| (3.37)
⩽ |Fi x̃(t)| + |Hixr(t)| + |ui

s(t)|
⩽ (1 − δ1 − δ2)ūi + δ1ūi + δ2ūi

⩽ ūi.

From (2.3), (3.16) and (3.37), we have

ωi(t) = ūi − Fi x̃(t) − Hixr(t) ⩾ 0. (3.38)

According to Eq (3.13), we can obtain

Fi x̃(t) + Hixr(t) = ui(t) − µ(t)BT
i Px̃(t) − ui

s(t). (3.39)

Therefore, applying (3.38) and (3.39), we get

ωi(t) = ūi − ui(t) + µ(t)BT
i Px̃(t) + ui

s(t). (3.40)

Since the µ(t) ⩽ 0 and µ(t)BT
i Px̃(t) ⩾ 0, it can be asserted that

Bi
T Px̃(t) = x̃T (t)PBi ⩽ 0.

Proof for S3. When the control input ui(t) of all input channels are less than the lower bounds,
alternatively,

−ρ̃i(ūi) ⩽ ui(t) = Fi x̃(t) + Hixr(t) + µ(t)Bi
T Px̃(t) + ui

s(t) ⩽ −ūi,

which implies sat(ui) = −ūi. From (2.3) and (3.16), we have

ωi(t) = −ūi − Fi x̃(t) − Hixr(t) ⩽ 0. (3.41)

Following the similar manner of obtaining (3.40), we find

ωi(t) = −ūi − ui(t) + µ(t)BT
i Px̃(t) + ui

s(t).
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Since µ(t) ⩽ 0 and µ(t)BT
i Px̃(t) ⩽ 0, we get

Bi
T Px̃(t) = x̃T (t)PBi ⩾ 0.

Proof for S4. When the values of some control input ui(t) are unsaturated, but the others are saturated.
As for the unsaturated inputs, we can obtain x̃T (t)PBiωi(t) ⩽ 0, and

ωi(t) = µ(t)BT
i Px̃(t) + ui

s(t).

With respect to saturated inputs the values of which are more than the supremum of saturation function,
the results in S2 imply ωi(t) ⩾ 0 and x̃T (t)PBi ⩽ 0, then we have x̃T (t)PBiωi(t) ⩽ 0, thus

ωi(t) = ūi − ui(t) + µ(t)BT
i Px̃(t) + ui

s(t).

As for the saturated inputs the values of which are less than the infimum of saturation function, the
assertions of S3 indicate ωi(t) ⩽ 0 and x̃T (t)PBi ⩾ 0, then we can get x̃T (t)PBiωi(t) ⩽ 0, and

ωi(t) = −ūi − ui(t) + µ(t)BT
i Px̃(t) + ui

s(t).

As indicated above, together with the inequality (3.35), we can assert

V̇2(t) + x̃T (t)(Q + FT WF)x̃(t)
⩽ΨTΛΨ + x̃T (t)Ph(t) + hT (t)Px̃(t) + x̃T (t)(∆AT P + P∆A)x̃(t)
+ 2x̃T (t)PB(ū − u(t) + µ(t)BT Px̃(t) + us(t)), (3.42)

combining with hypothesis 2.3, we can obtain

V̇2(t) + x̃T (t)(Q + FT WF)x̃(t) (3.43)
⩽ΨTΛΨ + 2∥BT Px̃(t)∥[ρ1(∥x̃(t)∥ + ∥Gxr(t)∥) + ρ3 + ρ2ū + 2ū + ρ̃(ū)]
+ 2∥BT Px̃(t)∥2µ(t).

By (3.14) and (3.43), we can get

V̇2(t) + x̃T (t)(Q + FT WF)x̃(t)
⩽ ΨTΛΨ

+
2(ρ1(∥x̃(t)∥ + ∥Gxr(t)∥) + ρ3 + ρ2ū + 2ū + ρ̃(ū))∥BT Px̃(t)∥ϱ(x̃(t))

(ρ1(∥x̃(t)∥ + ∥Gxr(t)∥) + ρ3 + ρ2ū + 2ū + ρ̃(ū))∥BT Px̃(t)∥ + ϱ(x̃(t))
. (3.44)

Obviously, the following inequality holds

0 ⩽
ϱ(x̃(t))ϕ
ϱ(x̃(t)) + ϕ

⩽ ϱ(x̃(t)),∀ϱ(x̃(t)) > 0, ϕ > 0. (3.45)

Then, it can be obtained that

(ρ1(∥x̃(t)∥ + ∥Gxr(t)∥) + ρ3 + ρ2ū + 2ū + ρ̃(ū))∥BT Px̃(t)∥ϱ(x̃(t))
(ρ1(∥x̃(t)∥ + ∥Gxr(t)∥) + ρ3 + ρ2ū + 2ū + ρ̃(ū))∥BT Px̃(t)∥ + ϱ(x̃(t))

⩽ ϱ(x̃(t)). (3.46)
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Combined (3.44) and (3.46), it’s obtained that

V̇2(t) + x̃T (t)(Q + FT WF)x̃(t) ⩽ ΨTΛΨ + 2ϱ(x̃(t)).

If there exist some matrices X > 0 and Z > 0 such that

Λ =

[
Λ11 PĀ
∗ −(1 − ϑ)Z

]
< 0,

then, λ(Λ) < 0. Thus

V̇2(t) + x̃T (t)(Q + FT WF)x̃(t) ⩽ λmin(Λ)∥Ψ(t)∥2 + 2ϱ(x̃(t)).

Here, we choose

ϱ(x̃(t)) ⩽
1
2

x̃T (t)(Q + FT WF)x̃(t) ⩽
1
2
λmax(Q + FT WF)∥x̃(t)∥2.

Moreover, according to the representation of the Lyapunov function V2(t), there exist two K−class
functions α1(·), α2(·) such that

α1(∥x̃(t)∥) ⩽ V2(x̃(t)) ⩽ α2(∥x̃(t)∥), (3.47)

which implies

α1(∥x̃(t)∥) =
∫ t

0
V̇2(x̃(s))ds + V2(x̃(0))

⩽ α2(∥x̃(0)∥) +
∫ t

0
λmin(Λ)∥Ψ(s)∥2ds + 2

∫ t

0
ϱ(x̃(s))ds, (3.48)

which together with (3.8) gives

α1(∥x̃(t)∥) ⩽ α2(∥x̃(0)∥) + 2
∫ t

0
ϱ(x̃(s))ds (3.49)

⩽ α2(∥x̃(0)∥) + 2ϱ.

Then, we can conclude that for any t > 0,

−

∫ t

0
λmin(Λ)∥Ψ(s)∥2ds ⩽ α2(∥x̃(0)∥) + 2

∫ t

0
ϱ(x̃(s))ds (3.50)

⩽ α2(∥x̃(0)∥) + 2ϱ̄,

which implies that

− lim
t→+∞

[ ∫ t

0
λmin(Λ)∥Ψ(s)∥2ds

]
⩽ α2(∥x̃(0)∥) + 2ϱ̄ < +∞. (3.51)

Hence, it follows from Barbalat’s Lemma that

lim
t→+∞

[ ∫ t

0
λmin(Λ)∥Ψ(t)∥2ds

]
= 0,

furthermore
lim

t→+∞
∥Ψ(t)∥ = 0.

As indicated above, the auxiliary state x̃(t) converges to zero asymptotically. Thus, based on the
relationship of x̃(t) and e(t), it can be asserted that the system output y(t) can be forced to track the
reference state yr(t) asymptotically. □
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4. Conclusions

Compared with the results in other studies [33, 35, 42, 51–53], the system considered in this paper
is a fractional-order uncertain system with time delays and saturation function, which is very complex.
The tracking controller is designed by the CNF control approach. Furthermore, based on the fractional-
order Mittag-Leffer asymptotical stability theorem, the asymptotical tracking and stability of the
controller proposed is proven by designing a fractional-order Lyapunov function and the fractional
Barbalat’s Lemma.
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