Research article Special Issues

Robust stability and boundedness of uncertain conformable fractional-order delay systems under input saturation

  • Received: 07 April 2023 Revised: 09 June 2023 Accepted: 25 June 2023 Published: 03 July 2023
  • MSC : 34K37, 93D09

  • In this article, a class of uncertain conformable fractional-order delay systems under input saturation is considered. By establishing the Lyapunov boundedness theorem for conformable fractional-order delay systems, some sufficient conditions for robust stability and boundedness of the systems are obtained. Examples are given to illustrate the obtained theory.

    Citation: Danhua He, Baizeng Bao, Liguang Xu. Robust stability and boundedness of uncertain conformable fractional-order delay systems under input saturation[J]. AIMS Mathematics, 2023, 8(9): 21123-21137. doi: 10.3934/math.20231076

    Related Papers:

  • In this article, a class of uncertain conformable fractional-order delay systems under input saturation is considered. By establishing the Lyapunov boundedness theorem for conformable fractional-order delay systems, some sufficient conditions for robust stability and boundedness of the systems are obtained. Examples are given to illustrate the obtained theory.



    加载中


    [1] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [2] F. F. Du, J. G. Lu, Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities, Appl. Math. Comput., 375 (2020), 125079. https://doi.org/10.1016/j.amc.2020.125079 doi: 10.1016/j.amc.2020.125079
    [3] F. F. Du, J. G. Lu, New criteria on finite-time stability of fractional-order Hopfield neural networks with time delays, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 3858–3866. https://doi.org/10.1109/TNNLS.2020.3016038 doi: 10.1109/TNNLS.2020.3016038
    [4] Y. C. Ding, H. Liu, A new fixed-time stability criterion for fractional-order systems, AIMS Math., 7 (2022), 6173–6181. https://doi.org/10.3934/math.2022343 doi: 10.3934/math.2022343
    [5] Y. J. Gu, H. Wang, Y. G. Yu, Synchronization for commensurate Riemann-Liouville fractional-order memristor-based neural networks with unknown parameters, J. Frank. Inst., 357 (2020), 8870–8898. https://doi.org/10.1016/j.jfranklin.2020.06.025 doi: 10.1016/j.jfranklin.2020.06.025
    [6] S. A. Murad, Z. A. Ameen, Existence and Ulam stability for fractional differential equations of mixed Caputo-Riemann derivatives, AIMS Math., 7 (2022), 6404–6419. https://doi.org/10.3934/math.2022357 doi: 10.3934/math.2022357
    [7] N. Sene, Fractional input stability for electrical circuits described by the Riemann-Liouville and the Caputo fractional derivatives, AIMS Math., 4 (2019), 147–165. https://doi.org/10.3934/Math.2019.1.147 doi: 10.3934/Math.2019.1.147
    [8] E. S. A. Shahri, A. Alfia, J. A. T. Machado, Lyapunov method for the stability analysis of uncertain fractional-order systems under input saturation, Appl. Math. Model., 81 (2020), 663–672. https://doi.org/10.1016/j.apm.2020.01.013 doi: 10.1016/j.apm.2020.01.013
    [9] F. A. Rihan, Delay differential equations and applications to biology, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-0626-7
    [10] Z. S. Aghayan, A. Alfi, J. A. T. Machado, Robust stability of uncertain fractional order systems of neutral type with distributed delays and control input saturation, ISA Trans., 111 (2021), 144–155. https://doi.org/10.1016/j.isatra.2020.11.009 doi: 10.1016/j.isatra.2020.11.009
    [11] L. Chen, Y. W. Wang, W. Yang, J. W. Xiao, Robust consensus of fractional-order multi-agent systems with input saturation and external disturbances, Neurocomputing, 303 (2018), 11–19. https://doi.org/10.1016/j.neucom.2018.04.002 doi: 10.1016/j.neucom.2018.04.002
    [12] D. H. He, L. G. Xu, Exponential stability of impulsive fractional switched systems with time delays, IEEE Trans. Circuits Syst. Ⅱ Exp. Briefs, 68 (2021), 1972–1976. https://doi.org/10.1109/TCSII.2020.3037654 doi: 10.1109/TCSII.2020.3037654
    [13] C. Li, K. Chen, J. G. Lu, R. N. Tang, Stability and stabilization analysis of fractional-order linear systems subject to actuator saturation and disturbance, IFAC, 50 (2017), 9718–9723. https://doi.org/10.1016/j.ifacol.2017.08.2055 doi: 10.1016/j.ifacol.2017.08.2055
    [14] Y. H. Lim, K. K. Oh, H. S. Ahn, Stability and stabilization of fractional-order linear systems subject to input saturation, IEEE Trans. Autom. Control, 58 (2013), 1062–1067. https://doi.org/10.1109/TAC.2012.2218064 doi: 10.1109/TAC.2012.2218064
    [15] E. S. A. Shahri, A. Alfi, J. A. T. Machado, Stability analysis of a class of nonlinear fractional-order systems under control input saturation, Int. J. Robust Nonlinear Control, 28 (2018), 2887–2905. https://doi.org/10.1002/rnc.4055 doi: 10.1002/rnc.4055
    [16] L. G. Xu, X. Y. Chu, H. X. Hu, Quasi-synchronization analysis for fractional-order delayed complex dynamical networks, Math. Comput. Simul., 185 (2021), 594–613. https://doi.org/10.1016/j.matcom.2021.01.016 doi: 10.1016/j.matcom.2021.01.016
    [17] D. H. He, L. G. Xu, Ultimate boundedness of nonautonomous dynamical complex networks under impulsive control, IEEE Trans. Circuits Syst. Ⅱ Exp. Briefs, 62 (2015), 997–1001. https://doi.org/10.1109/TCSII.2015.2436191 doi: 10.1109/TCSII.2015.2436191
    [18] Y. C. Liu, Q. D. Zhu, Adaptive neural network asymptotic control design for MIMO nonlinear systems based on event-triggered mechanism, Inform. Sci., 603 (2022), 91–105. https://doi.org/10.1016/j.ins.2022.04.048 doi: 10.1016/j.ins.2022.04.048
    [19] Y. C. Liu, Q. D. Zhu, G. X. Wen, Adaptive tracking control for perturbed strict-feedback nonlinear systems based on optimized backstepping technique, IEEE Trans. Neural Netw. Learn. Syst., 33 (2022), 853–865. https://doi.org/10.1109/TNNLS.2020.3029587 doi: 10.1109/TNNLS.2020.3029587
    [20] L. G. Xu, X. Y. Chu, H. X. Hu, Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000. https://doi.org/10.1016/j.aml.2019.106000 doi: 10.1016/j.aml.2019.106000
    [21] L. G. Xu, H. X. Hu, F. J. Qin, Ultimate boundedness of impulsive fractional differential equations, Appl. Math. Lett., 62 (2016), 110–117. https://doi.org/10.1016/j.aml.2016.06.011 doi: 10.1016/j.aml.2016.06.011
    [22] L. G. Xu, J. K. Li, S. S. Ge, Impulsive stabilization of fractional differential systems, ISA Trans., 70 (2017), 125–131. https://doi.org/10.1016/j.isatra.2017.06.009 doi: 10.1016/j.isatra.2017.06.009
    [23] L. G. Xu, W. Liu, H. X. Hu, W. S. Zhou, Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control, Nonlinear Dyn., 96 (2019), 1665–1675. https://doi.org/10.1007/s11071-019-04877-y doi: 10.1007/s11071-019-04877-y
    [24] S. Haghighatnia, H. T. Shandiz, A. Alfi, Conformable fractional order sliding mode control for a class of fractional order chaotic systems, Int. J. Ind. Electron. Control Optim., 2 (2019), 177–188. https://doi.org/10.22111/ieco.2018.25403.1049 doi: 10.22111/ieco.2018.25403.1049
    [25] Y. F. Qi, X. H. Wang, Asymptotical stability analysis of conformable fractional systems, J. Taibah Univ. Sci., 14 (2020), 44–49. https://doi.org/10.1080/16583655.2019.1701390 doi: 10.1080/16583655.2019.1701390
    [26] A. Souahi, A. B. Makhlouf, M. A. Hammami, Stability analysis of conformable fractional-order nonlinear systems, Indagat. Math., 28 (2017), 1265–1274. https://doi.org/10.1016/j.indag.2017.09.009 doi: 10.1016/j.indag.2017.09.009
    [27] X. Y. Chu, L. G. Xu, H. X. Hu, Exponential quasi-synchronization of conformable fractional-order complex dynamical networks, Chaos Solitons Fract., 140 (2020), 110268. https://doi.org/10.1016/j.chaos.2020.110268 doi: 10.1016/j.chaos.2020.110268
    [28] D. H. He, B. Z. Bao, H. X. Hu, L. G. Xu, Asymptotic boundedness of conformable fractional delay differential systems, IEEE Trans. Circuits Syst. Ⅱ Exp. Briefs, 2023. https://doi.org/10.1109/TCSII.2023.3282232 doi: 10.1109/TCSII.2023.3282232
    [29] P. P. Khargonakar, I. R. Petersen, K. Zhou, Robust stabilization of uncertain linear systems: quadratic stabilizability and $H_\infty$ control theory, IEEE Trans. Autom. Control, 35 (1990), 356–361. https://doi.org/10.1109/9.50357 doi: 10.1109/9.50357
    [30] E. S. A. Shahri, S. Balochian, Analysis of fractional-order linear systems with saturation using Lyapunov's second method and convex optimization, Int. J. Autom. Comput., 12 (2015), 440–447. https://doi.org/10.1007/s11633-014-0856-8 doi: 10.1007/s11633-014-0856-8
    [31] E. S. A. Shahri, A. Alfi, J. A. T. Machado, Stabilization of fractional-order systems subject to saturation element using fractional dynamic output feedback sliding mode control, J. Comput. Nonlinear Dyn., 12 (2017), 1–6. https://doi.org/10.1115/1.4035196 doi: 10.1115/1.4035196
    [32] E. S. A. Shahri, A. Alfi, J. A. T. Machado, An extension of estimation of domain of attraction for fractional order linear system subject to saturation control, Appl. Math. Lett., 47 (2015), 26–34. https://doi.org/10.1016/j.aml.2015.02.020 doi: 10.1016/j.aml.2015.02.020
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(950) PDF downloads(74) Cited by(2)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog