In this article, a class of uncertain conformable fractional-order delay systems under input saturation is considered. By establishing the Lyapunov boundedness theorem for conformable fractional-order delay systems, some sufficient conditions for robust stability and boundedness of the systems are obtained. Examples are given to illustrate the obtained theory.
Citation: Danhua He, Baizeng Bao, Liguang Xu. Robust stability and boundedness of uncertain conformable fractional-order delay systems under input saturation[J]. AIMS Mathematics, 2023, 8(9): 21123-21137. doi: 10.3934/math.20231076
In this article, a class of uncertain conformable fractional-order delay systems under input saturation is considered. By establishing the Lyapunov boundedness theorem for conformable fractional-order delay systems, some sufficient conditions for robust stability and boundedness of the systems are obtained. Examples are given to illustrate the obtained theory.
[1] | R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002 |
[2] | F. F. Du, J. G. Lu, Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities, Appl. Math. Comput., 375 (2020), 125079. https://doi.org/10.1016/j.amc.2020.125079 doi: 10.1016/j.amc.2020.125079 |
[3] | F. F. Du, J. G. Lu, New criteria on finite-time stability of fractional-order Hopfield neural networks with time delays, IEEE Trans. Neural Netw. Learn. Syst., 32 (2021), 3858–3866. https://doi.org/10.1109/TNNLS.2020.3016038 doi: 10.1109/TNNLS.2020.3016038 |
[4] | Y. C. Ding, H. Liu, A new fixed-time stability criterion for fractional-order systems, AIMS Math., 7 (2022), 6173–6181. https://doi.org/10.3934/math.2022343 doi: 10.3934/math.2022343 |
[5] | Y. J. Gu, H. Wang, Y. G. Yu, Synchronization for commensurate Riemann-Liouville fractional-order memristor-based neural networks with unknown parameters, J. Frank. Inst., 357 (2020), 8870–8898. https://doi.org/10.1016/j.jfranklin.2020.06.025 doi: 10.1016/j.jfranklin.2020.06.025 |
[6] | S. A. Murad, Z. A. Ameen, Existence and Ulam stability for fractional differential equations of mixed Caputo-Riemann derivatives, AIMS Math., 7 (2022), 6404–6419. https://doi.org/10.3934/math.2022357 doi: 10.3934/math.2022357 |
[7] | N. Sene, Fractional input stability for electrical circuits described by the Riemann-Liouville and the Caputo fractional derivatives, AIMS Math., 4 (2019), 147–165. https://doi.org/10.3934/Math.2019.1.147 doi: 10.3934/Math.2019.1.147 |
[8] | E. S. A. Shahri, A. Alfia, J. A. T. Machado, Lyapunov method for the stability analysis of uncertain fractional-order systems under input saturation, Appl. Math. Model., 81 (2020), 663–672. https://doi.org/10.1016/j.apm.2020.01.013 doi: 10.1016/j.apm.2020.01.013 |
[9] | F. A. Rihan, Delay differential equations and applications to biology, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-0626-7 |
[10] | Z. S. Aghayan, A. Alfi, J. A. T. Machado, Robust stability of uncertain fractional order systems of neutral type with distributed delays and control input saturation, ISA Trans., 111 (2021), 144–155. https://doi.org/10.1016/j.isatra.2020.11.009 doi: 10.1016/j.isatra.2020.11.009 |
[11] | L. Chen, Y. W. Wang, W. Yang, J. W. Xiao, Robust consensus of fractional-order multi-agent systems with input saturation and external disturbances, Neurocomputing, 303 (2018), 11–19. https://doi.org/10.1016/j.neucom.2018.04.002 doi: 10.1016/j.neucom.2018.04.002 |
[12] | D. H. He, L. G. Xu, Exponential stability of impulsive fractional switched systems with time delays, IEEE Trans. Circuits Syst. Ⅱ Exp. Briefs, 68 (2021), 1972–1976. https://doi.org/10.1109/TCSII.2020.3037654 doi: 10.1109/TCSII.2020.3037654 |
[13] | C. Li, K. Chen, J. G. Lu, R. N. Tang, Stability and stabilization analysis of fractional-order linear systems subject to actuator saturation and disturbance, IFAC, 50 (2017), 9718–9723. https://doi.org/10.1016/j.ifacol.2017.08.2055 doi: 10.1016/j.ifacol.2017.08.2055 |
[14] | Y. H. Lim, K. K. Oh, H. S. Ahn, Stability and stabilization of fractional-order linear systems subject to input saturation, IEEE Trans. Autom. Control, 58 (2013), 1062–1067. https://doi.org/10.1109/TAC.2012.2218064 doi: 10.1109/TAC.2012.2218064 |
[15] | E. S. A. Shahri, A. Alfi, J. A. T. Machado, Stability analysis of a class of nonlinear fractional-order systems under control input saturation, Int. J. Robust Nonlinear Control, 28 (2018), 2887–2905. https://doi.org/10.1002/rnc.4055 doi: 10.1002/rnc.4055 |
[16] | L. G. Xu, X. Y. Chu, H. X. Hu, Quasi-synchronization analysis for fractional-order delayed complex dynamical networks, Math. Comput. Simul., 185 (2021), 594–613. https://doi.org/10.1016/j.matcom.2021.01.016 doi: 10.1016/j.matcom.2021.01.016 |
[17] | D. H. He, L. G. Xu, Ultimate boundedness of nonautonomous dynamical complex networks under impulsive control, IEEE Trans. Circuits Syst. Ⅱ Exp. Briefs, 62 (2015), 997–1001. https://doi.org/10.1109/TCSII.2015.2436191 doi: 10.1109/TCSII.2015.2436191 |
[18] | Y. C. Liu, Q. D. Zhu, Adaptive neural network asymptotic control design for MIMO nonlinear systems based on event-triggered mechanism, Inform. Sci., 603 (2022), 91–105. https://doi.org/10.1016/j.ins.2022.04.048 doi: 10.1016/j.ins.2022.04.048 |
[19] | Y. C. Liu, Q. D. Zhu, G. X. Wen, Adaptive tracking control for perturbed strict-feedback nonlinear systems based on optimized backstepping technique, IEEE Trans. Neural Netw. Learn. Syst., 33 (2022), 853–865. https://doi.org/10.1109/TNNLS.2020.3029587 doi: 10.1109/TNNLS.2020.3029587 |
[20] | L. G. Xu, X. Y. Chu, H. X. Hu, Exponential ultimate boundedness of non-autonomous fractional differential systems with time delay and impulses, Appl. Math. Lett., 99 (2020), 106000. https://doi.org/10.1016/j.aml.2019.106000 doi: 10.1016/j.aml.2019.106000 |
[21] | L. G. Xu, H. X. Hu, F. J. Qin, Ultimate boundedness of impulsive fractional differential equations, Appl. Math. Lett., 62 (2016), 110–117. https://doi.org/10.1016/j.aml.2016.06.011 doi: 10.1016/j.aml.2016.06.011 |
[22] | L. G. Xu, J. K. Li, S. S. Ge, Impulsive stabilization of fractional differential systems, ISA Trans., 70 (2017), 125–131. https://doi.org/10.1016/j.isatra.2017.06.009 doi: 10.1016/j.isatra.2017.06.009 |
[23] | L. G. Xu, W. Liu, H. X. Hu, W. S. Zhou, Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control, Nonlinear Dyn., 96 (2019), 1665–1675. https://doi.org/10.1007/s11071-019-04877-y doi: 10.1007/s11071-019-04877-y |
[24] | S. Haghighatnia, H. T. Shandiz, A. Alfi, Conformable fractional order sliding mode control for a class of fractional order chaotic systems, Int. J. Ind. Electron. Control Optim., 2 (2019), 177–188. https://doi.org/10.22111/ieco.2018.25403.1049 doi: 10.22111/ieco.2018.25403.1049 |
[25] | Y. F. Qi, X. H. Wang, Asymptotical stability analysis of conformable fractional systems, J. Taibah Univ. Sci., 14 (2020), 44–49. https://doi.org/10.1080/16583655.2019.1701390 doi: 10.1080/16583655.2019.1701390 |
[26] | A. Souahi, A. B. Makhlouf, M. A. Hammami, Stability analysis of conformable fractional-order nonlinear systems, Indagat. Math., 28 (2017), 1265–1274. https://doi.org/10.1016/j.indag.2017.09.009 doi: 10.1016/j.indag.2017.09.009 |
[27] | X. Y. Chu, L. G. Xu, H. X. Hu, Exponential quasi-synchronization of conformable fractional-order complex dynamical networks, Chaos Solitons Fract., 140 (2020), 110268. https://doi.org/10.1016/j.chaos.2020.110268 doi: 10.1016/j.chaos.2020.110268 |
[28] | D. H. He, B. Z. Bao, H. X. Hu, L. G. Xu, Asymptotic boundedness of conformable fractional delay differential systems, IEEE Trans. Circuits Syst. Ⅱ Exp. Briefs, 2023. https://doi.org/10.1109/TCSII.2023.3282232 doi: 10.1109/TCSII.2023.3282232 |
[29] | P. P. Khargonakar, I. R. Petersen, K. Zhou, Robust stabilization of uncertain linear systems: quadratic stabilizability and $H_\infty$ control theory, IEEE Trans. Autom. Control, 35 (1990), 356–361. https://doi.org/10.1109/9.50357 doi: 10.1109/9.50357 |
[30] | E. S. A. Shahri, S. Balochian, Analysis of fractional-order linear systems with saturation using Lyapunov's second method and convex optimization, Int. J. Autom. Comput., 12 (2015), 440–447. https://doi.org/10.1007/s11633-014-0856-8 doi: 10.1007/s11633-014-0856-8 |
[31] | E. S. A. Shahri, A. Alfi, J. A. T. Machado, Stabilization of fractional-order systems subject to saturation element using fractional dynamic output feedback sliding mode control, J. Comput. Nonlinear Dyn., 12 (2017), 1–6. https://doi.org/10.1115/1.4035196 doi: 10.1115/1.4035196 |
[32] | E. S. A. Shahri, A. Alfi, J. A. T. Machado, An extension of estimation of domain of attraction for fractional order linear system subject to saturation control, Appl. Math. Lett., 47 (2015), 26–34. https://doi.org/10.1016/j.aml.2015.02.020 doi: 10.1016/j.aml.2015.02.020 |