Citation: Gauhar Rahman, Shahid Mubeen, Kottakkaran Sooppy Nisar. On generalized $\mathtt{k}$-fractional derivative operator[J]. AIMS Mathematics, 2020, 5(3): 1936-1945. doi: 10.3934/math.2020129
[1] | P. Agarwal, M. Jleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, J. Inequal. Appl., 2017 (2017), 55. |
[2] | B. Acay, E. Bas, T. Abdeljawad, Non-local fractional calculus from different view point generated by truncated M-derivative, J. Comput. Appl. Math., 366 (2020), 112410. |
[3] | B. Acay, E. Bas, T. Abdeljawad, Fractional economic models based on market equilibrium in the frame of different type kernels, Chaos Soliton. Fract., 130 (2020), 109438. |
[4] | E. Bas, R. Ozarslan, D. Baleanu, Comparative simulations for solutions of fractional Sturm-Liouville problems with non-singular operators, Adv. Differ. Equ., 2018 (2018), 350. |
[5] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulgaciones Math., 15 (2007), 179-192. |
[6] | G. A. Dorrego, R. A. Cerutti, The k-Mittag-Leffler function, Int. J. Contemp. Math. Sci., 7 (2012), 705-716. |
[7] | G. Farid, G. M. Habullah, An extension of Hadamard fractional integral, Int. J. Math. Anal., 9 (2015), 471-482. doi: 10.12988/ijma.2015.5118 |
[8] | G. Farid, A. U. Rehman, M. Zahra, On Hadamard-type inequalities for k-fractional integrals, Konuralp J. Math., 4 (2016), 79-86. |
[9] | S. Habib, S. Mubeen, M. N. Naeem, et al. Generalized k-fractional conformable integrals and related inequalities, AIMS Mathematics, 4 (2019), 343-358. doi: 10.3934/math.2019.3.343 |
[10] | C. J. Huang, G. Rahman, K. S. Nisar, et al. Some inequalities of the Hermite-Hadamard type for k-fractional conformable integrals, Aust. J. Math. Anal. Appl., 16 (2019), 7. |
[11] | S. Mubeen, S. Iqbal, Grüss type integral inequalities for generalized Riemann-Liouville kfractional integrals, J. Inequal. Appl., 2016 (2016), 109. |
[12] | S. Iqbal, S. Mubeen, M. Tomar, On Hadamard k-fractional integrals, J. Fract. Calc. Appl., 9 (2018), 255-267. |
[13] | C. G. Kokologiannaki, Properties and inequalities of generalized k-gamma, beta and zeta functions, Int. J. Contemp. Math. Sci., 5 (2010), 653-660. |
[14] | V. Krasniqi, A limit for the k-gamma and k-beta function, Int. Math. Forum., 5 (2010), 1613-1617. |
[15] | A. A. Kilbas, H. M. Sarivastava, J. J. Trujillo, Theory and Application of Fractional Differential Equation, Elsevier Sciences B.V., Amsterdam, 2006. |
[16] | M. Mansour, Determining the k-generalized gamma function Γk(x) by functional equations, Int. J. Contemp. Math. Sci., 4 (2009), 1037-1042. |
[17] | F. Merovci, Power product inequalities for the Γk function, Int. J. Math. Anal., 4 (2010), 1007-1012. |
[18] | S. Mubeen, k-Analogue of Kummer's first formula, J. Inequal. Spec. Funct., 3 (2012), 41-44. |
[19] | S. Mubeen, Solution of some integral equations involving confluent k-hypergeometric functions, Appl. Math., 4 (2013), 9-11. doi: 10.4236/am.2013.47A003 |
[20] | S. Mubeen, G. M. Habibullah, An integral representation of k-hypergeometric functions, Int. Math. Forum, 7 (2012), 203-207. |
[21] | S. Mubeen, G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89-94. |
[22] | S. Mubeen, S. Iqbal, G. Rahman, Contiguous function relations and an integral representation for Appell k-series F1,k, Int. J. Math. Res., 4 (2015), 53-63. doi: 10.18488/journal.24/2015.4.2/24.2.53.63 |
[23] | S. Mubeen, M. Naz, M, G. Rahman, A note on k-hypergeometric differential equations, J. Inequal. Spec. Funct., 4 (2013), 38-43. |
[24] | S. Mubeen, S. Iqbal, Z. Iqbal, On Ostrowski type inequalities for generalized k-fractional integrals, J. Inequ. Spec. Funct., 8 (2017), 3. |
[25] | K. S. Nisar, G. Rahman, J. Choi, et al. Certain Gronwall type inequalities associated with riemann-liouville k- and hadamard k-fractional derivatives and their applications, East Asian Math. J., 34 (2018), 249-263. |
[26] | F. Qi, G. Rahman, S. M. Hussain, et al. Some inequalities of Chebyšev Type for conformable k-Fractional integral operators, Symmetry, 10 (2018), 614. |
[27] | E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960. |
[28] | M. Samraiz, E. Set, M. Hasnain, et al. On an extension of Hadamard fractional derivative, J. Inequal. Appl., 2019 (2019), 263. |
[29] | E. Set, M. A. Noor, M. U. Awan, et al. Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 169. |
[30] | G. Rahman, K. S. Nisar, A. Ghaffar, et al. Some inequalities of the Grüss type for conformable k-fractional integral operators, RACSAM, 114 (2020), 9. |
[31] | M. Tomar, S. Mubeen, J. Choi, Certain inequalities associated with Hadamard k-fractional integral operators, J. Inequal. Appl., 2016 (2016), 234. |
[32] | D. Valerio, J. J. Trujillo, M. Rivero, Fractional calculus: A survey of useful formulas, Eur. Phys. J. Spec. Top., 222 (2013), 1827-1846. doi: 10.1140/epjst/e2013-01967-y |