Research article Special Issues

High power sums of Fourier coefficients of holomorphic cusp forms and their applications

  • Received: 30 June 2024 Revised: 19 August 2024 Accepted: 21 August 2024 Published: 28 August 2024
  • MSC : 11F30, 11F66, 11N37

  • Let $ \lambda_f(n) $ be the $ n $th normalized Fourier coefficient of a holomorphic cusp form $ f $ for the full modular group. In this paper, we established asymptotic formulae for high power sums of Fourier coefficients of cusp forms and further improved previous results. Moreover, as an application, we studied the signs of the sequences $ \{\lambda_f(n)\} $ and $ \{\lambda_f(n)\lambda_g(n)\} $ in short intervals, and presented some quantitative results for the number of sign changes for $ n\leq x $.

    Citation: Guangwei Hu, Huixue Lao, Huimin Pan. High power sums of Fourier coefficients of holomorphic cusp forms and their applications[J]. AIMS Mathematics, 2024, 9(9): 25166-25183. doi: 10.3934/math.20241227

    Related Papers:

  • Let $ \lambda_f(n) $ be the $ n $th normalized Fourier coefficient of a holomorphic cusp form $ f $ for the full modular group. In this paper, we established asymptotic formulae for high power sums of Fourier coefficients of cusp forms and further improved previous results. Moreover, as an application, we studied the signs of the sequences $ \{\lambda_f(n)\} $ and $ \{\lambda_f(n)\lambda_g(n)\} $ in short intervals, and presented some quantitative results for the number of sign changes for $ n\leq x $.



    加载中


    [1] P. Deligne, La conjecture de Weil, Publ. Math. Inst. Hautes Etudes Sci., 43 (1974), 273–307. https://doi.org/10.1007/BF02684373
    [2] H. Iwaniec, Topics in classical automorphic forms, American Mathematical Society, 1997. https://doi.org/10.1090/gsm/017
    [3] J. Wu, Power sums of Hecke eigenvalues and application, Acta Arith., 137 (2009), 333–344. https://doi.org/10.4064/aa137-4-3 doi: 10.4064/aa137-4-3
    [4] R. A. Rankin, Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. Ⅱ. The order of the Fourier coefficients of integral modular forms, Math. Proc. Cambridge Phios. Soc., 35 (1939), 357–372. https://doi.org/10.1017/S0305004100021101 doi: 10.1017/S0305004100021101
    [5] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der theorie der modulformen nahe verbunden ist, Arch. Math. Naturvid, 43 (1940), 47–50.
    [6] B. R. Huang, On the Rankin-Selberg problem, Math. Ann., 381 (2021), 1217–1251. https://doi.org/10.1007/s00208-021-02186-7 doi: 10.1007/s00208-021-02186-7
    [7] O. M. Fomenko, Fourier coefficients of parabolic forms and automorphic $L$-functions, J. Math. Sci., 95 (1999), 2295–2316. https://doi.org/10.1007/BF02172473 doi: 10.1007/BF02172473
    [8] G. S. Lü, The sixth and eighth moments of Fourier coefficiehts of cusp forms, J. Number Theory, 129 (2009), 2790–2800. https://doi.org/10.1016/j.jnt.2009.01.019 doi: 10.1016/j.jnt.2009.01.019
    [9] Y. K. Lau, G. S. Lü, J. Wu, Integral power sums of Hecke eigenvalues, Acta. Arith., 150 (2011), 193–207. https://doi.org/10.4064/aa150-2-7 doi: 10.4064/aa150-2-7
    [10] J. Newton, J. A. Thorne, Symmetric power functoriality for holomorphic modular forms, Publ. Math. Inst. Hautes Etudes Sci., 134 (2021), 1–116. https://doi.org/10.1007/s10240-021-00127-3 doi: 10.1007/s10240-021-00127-3
    [11] C. R. Xu, General asymptotic formula of Fourier coefficients of cusp forms over sum of two squares, J. Number Theory, 236 (2022), 214–229. https://doi.org/10.1016/j.jnt.2021.07.017 doi: 10.1016/j.jnt.2021.07.017
    [12] H. F. Liu, On the asymptotic distribution of Fourier coefficients of cusp forms, Bull. Braz. Math. Soc. New Ser., 54 (2023), 21. https://doi.org/10.1007/s00574-023-00335-x doi: 10.1007/s00574-023-00335-x
    [13] G. D. Hua, On the higher power moments of cusp form coefficients over sums of two squares, Czech. Math. J., 72 (2022), 1089–1104. https://doi.org/10.21136/CMJ.2022.0358-21 doi: 10.21136/CMJ.2022.0358-21
    [14] A. P. Ogg, On a convolution of $L$-series, Invent. Math., 7 (1969), 297–312. https://doi.org/10.1007/BF01425537 doi: 10.1007/BF01425537
    [15] G. S. Lü, Sums of absolute values of cusp form coefficients and their application, J. Number Theory, 139 (2014), 29–43. https://doi.org/10.1016/j.jnt.2013.12.011 doi: 10.1016/j.jnt.2013.12.011
    [16] X. G. He, On sign change of Fourier coefficients of cusp forms, Ph.D. thesis, Shandong University, 2019.
    [17] G. S. Lü, On higher moments of Fourier coefficients of holomorphic cusp form, Canad. J. Math., 63 (2011), 643–647. https://doi.org/10.4153/CJM-2011-010-5 doi: 10.4153/CJM-2011-010-5
    [18] M. R. Murty, Oscillations of Fourier coefficients of modular forms, Math. Ann., 262 (1983), 431–446. https://doi.org/10.1007/BF01456059 doi: 10.1007/BF01456059
    [19] J. Meher, M. R. Murty, Sign changes of Fourier coefficients of half-integral weight cusp forms, Int. J. Number Theory, 10 (2014), 905–914. https://doi.org/10.1142/S1793042114500067 doi: 10.1142/S1793042114500067
    [20] M. Kumari, M. R. Murty, Simultaneous non-vanishing and sign changes of Fourier coefficients of modular forms, Int. J. Number Theory, 14 (2018), 2291–2301. https://doi.org/10.1142/S1793042118501397 doi: 10.1142/S1793042118501397
    [21] A. Ivić, Exponent pairs and the zeta function of Riemann, Stud. Sci. Math. Hung., 15 (1980), 157–181.
    [22] J. Bourgain, Decoupling, exponential sums and the Riemann zeta function, J. Amer. Math. Soc., 30 (2017), 205–224. https://doi.org/10.1090/jams/860 doi: 10.1090/jams/860
    [23] K. Ramachandra, A. Sankaranarayanan, Notes on the Riemann zeta-function, J. Indian Math. Soc., 57 (1991), 67–77.
    [24] A. Ivić, On zeta-functions associated with Fourier coefficients of cusp forms, Proceedings of the Amalifi Conference on Analytic Number Theory, 1989,231–246.
    [25] A. Good, The square mean of Dirichlet series associated with cusp forms, Mathematika, 29 (1982), 278–295. https://doi.org/10.1112/S0025579300012377 doi: 10.1112/S0025579300012377
    [26] Y. Lin, R. Nunes, Z. Qi, Strong subconvexity for self-dual GL(3) $L$-functions, Int. Math. Res. Not., 2023 (2023), 11453–11470. https://doi.org/10.1093/imrn/rnac153 doi: 10.1093/imrn/rnac153
    [27] Y. Lin, Q. Sun, Analytic twists of $GL_3\times GL_2$ automorphic forms, Int. Math. Res. Not., 2021 (2021), 15143–15208. https://doi.org/10.1093/imrn/rnaa348 doi: 10.1093/imrn/rnaa348
    [28] A. Perelli, General $L$-functions, Ann. Mat. Pura Appl., 130 (1982), 287–306. https://doi.org/10.1007/BF01761499
    [29] H. Iwaniec, E. Kowalski, Analytic number theory, American Mathematical Society, 2004.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(134) PDF downloads(38) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog