We present a novel framework for introducing generalized 3-variable 1-parameter Hermite-based Appell polynomials. These polynomials are characterized by generating function, series definition, and determinant definition, elucidating their fundamental properties. Moreover, utilizing a factorization method, we established recurrence relations, shift operators, and various differential equations, including differential, integrodifferential, and partial differential equations. Special attention is given to exploring the specific cases of 3-variable 1-parameter generalized Hermite-based Bernoulli, Euler, and Genocchi polynomials, offering insights into their unique features and applications.
Citation: Mohra Zayed, Shahid Ahmad Wani. Properties and applications of generalized 1-parameter 3-variable Hermite-based Appell polynomials[J]. AIMS Mathematics, 2024, 9(9): 25145-25165. doi: 10.3934/math.20241226
We present a novel framework for introducing generalized 3-variable 1-parameter Hermite-based Appell polynomials. These polynomials are characterized by generating function, series definition, and determinant definition, elucidating their fundamental properties. Moreover, utilizing a factorization method, we established recurrence relations, shift operators, and various differential equations, including differential, integrodifferential, and partial differential equations. Special attention is given to exploring the specific cases of 3-variable 1-parameter generalized Hermite-based Bernoulli, Euler, and Genocchi polynomials, offering insights into their unique features and applications.
[1] | G. Dattoli, C. Chiccoli, S. Lorenzutta, G. Maino, A. Torre, Generalized Bessel functions and generalized Hermite polynomials, J. Math. Anal. Appl., 178 (1993), 509–516. https://doi.org/10.1006/jmaa.1993.1321 doi: 10.1006/jmaa.1993.1321 |
[2] | G. Dattoli, S. Lorenzutta, G. Maino, A. Torre, C. Cesarano, Generalized Hermite polynomials and super-Gaussian forms, J. Math. Anal. Appl., 203 (1996), 597–609. https://doi.org/10.1006/jmaa.1996.0399 doi: 10.1006/jmaa.1996.0399 |
[3] | P. Appell, J. K. de F${\acute{e}}$riet, Fonctions hyperg${\rm\acute{e}}$om${\rm\acute{e}}$triques et hypersph${\rm\acute{e}}$riques: polyn${\rm\hat{o}}$mes d' Hermite, Gauthier-Villars, Paris, 1926. |
[4] | B. Yılmaz, M. A. Özarslan, Differential equations for the extended 2D Bernoulli and Euler polynomials, Adv. Differ. Equ., 2013 (2013), 107. https://doi.org/10.1186/1687-1847-2013-107 doi: 10.1186/1687-1847-2013-107 |
[5] | S. Khan, G. Yasmin, R. Khan, N. A. M. Hassan, Hermite-based Appell polynomials: properties and applications, J. Math. Anal. Appl., 351 (2009), 756–764. https://doi.org/10.1016/j.jmaa.2008.11.002 doi: 10.1016/j.jmaa.2008.11.002 |
[6] | P. Appell, Sur une classe de polynômes, Ann. Sci. $\acute{E}$cole. Norm. Sup., 9 (1880), 119–144. https://doi.org/10.24033/asens.186 |
[7] | S. Roman, The umbral calculus, New York: Academic Press, 1984. |
[8] | L. Bedratyuk, J. Flusser, T. Suk, J. Kostkova, J. Kautsky, Non-separable rotation moment invariants, Pattern Recogn., 127 (2022), 108607. https://doi.org/10.1016/j.patcog.2022.108607 doi: 10.1016/j.patcog.2022.108607 |
[9] | J. Flusser, T. Suk, L. Bedratyuk, T. Karella, 3D non-separable moment invariants, In: N. Tsapatsoulis, Computer analysis of images and patterns, CAIP 2023, Lecture Notes in Computer Science, Springer, 14184 (2023), 295–305. https://doi.org/10.1007/978-3-031-44237-7_28 |
[10] | M. X. He, P. E. Ricci, Differential equation of Appell polynomials via the factorization method, J. Comput. Appl. Math., 139 (2002), 231–237. https://doi.org/10.1016/S0377-0427(01)00423-X doi: 10.1016/S0377-0427(01)00423-X |
[11] | L. Infeld, T. E. Hull, The factorization method, Rev. Mod. Phys., 23 (1951), 21–68. https://doi.org/10.1103/RevModPhys.23.21 doi: 10.1103/RevModPhys.23.21 |
[12] | S. A. Wani, S. Khan, Certain properties and applications of the 2D Sheffer and related polynomials, Bol. Soc. Mat. Mex., 26 (2020), 947–971. https://doi.org/10.1007/s40590-020-00280-5 doi: 10.1007/s40590-020-00280-5 |
[13] | S. A. Wani, S. Khan, Properties and applications of the Gould-Hopper-Frobenius-Euler polynomials, Tbilisi Math. J., 12 (2019), 93–104 https://doi.org/10.32513/tbilisi/1553565629 doi: 10.32513/tbilisi/1553565629 |
[14] | S. Araci, M. Riyasat, S. A. Wani, S. Khan, Differential and integral equations for the 3-variable Hermite-Frobenius-Euler and Frobenius-Genocchi polynomials, Appl. Math. Inf. Sci., 11 (2017), 1335–1346. https://doi.org/10.18576/amis/110510 doi: 10.18576/amis/110510 |
[15] | B. S. T. Alkahtani, I. Alazman, S. A. Wani, Some families of differential equations associated with multivariate Hermite polynomials, Fractal Fract., 7 (2023), 390. https://doi.org/10.3390/fractalfract7050390 doi: 10.3390/fractalfract7050390 |
[16] | Z. Ozat, M. A. Ozarslan, B. Cekim, On Bell based Appell polynomials, Turk. J. Math., 47 (2023), 5. https://doi.org/10.55730/1300-0098.3415 doi: 10.55730/1300-0098.3415 |
[17] | G. Baran, Z. Ozat, B. Cekim, M. A. Ozarslan, Some properties of degenerate Hermite Appell polynomials in three variables, Filomat, 37 (2023), 6537–6567. https://doi.org/10.2298/FIL2319537B doi: 10.2298/FIL2319537B |
[18] | N. Biricik, B. Çekim, M. A. Özarslan, Sequences of twice-iterated $\Delta$w-Gould–Hopper Appell polynomials, J. Taibah Univ. Sci., 18 (2023), 2286714. https://doi.org/10.1080/16583655.2023.2286714 doi: 10.1080/16583655.2023.2286714 |
[19] | S. Khan, N. Raza, General-Appell polynomials within the context of monomiality principle, Int. J. Anal., 2013 (2013), 328032. https://doi.org/10.1155/2013/328032 doi: 10.1155/2013/328032 |
[20] | S. Khan, G. Yasmin, R. Khan, N. A. M. Hassan, Hermite-based Appell polynomials: properties and applications, J. Math. Anal. Appl., 351 (2009), 756–764. https://doi.org/10.1016/j.jmaa.2008.11.002 doi: 10.1016/j.jmaa.2008.11.002 |
[21] | H. M. Srivastava, M. A. Özarslan, B. Yılmaz, Some families of differential equations associated with the Hermite-based Appell polynomials and other classes of Hermite-based polynomials, Filomat, 28 (2014), 695–708. https://doi.org/10.2298/FIL1404695S doi: 10.2298/FIL1404695S |
[22] | H. Bateman, A. Erdélyi, Higher transcendental functions, McGraw-Hill Book Company, 1953. |
[23] | J. Sándor, B. Crstici, Handbook of number theory II, Springer Science & Business Media, 2004. |