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1. Introduction and preliminaries

In recent years, notable progress has been in developing various generalizations of special functions
within mathematical physics. These advancements provide a robust analytical framework for solving a
wide array of mathematical physics problems and have extensive practical applications across diverse
domains. Particularly, the significance of generalized Hermite polynomials has been underscored, as
noted in previous studies [1, 2]. These polynomials find utility in addressing challenges in quantum
mechanics, optical beam transport, and a spectrum of problems spanning partial differential equations
to abstract group theory.

The “2-variable Hermite Kampé de Feriet polynomials (2VHKdFP)”, denoted asDn(ν1, ν2) [3], are
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expressed through the following generating function:

eν1ξ+ν2ξ
2

=

∞∑
n=0

Dn(ν1, ν2)
ξn

n!
. (1.1)

Similarly, the “2-variable 1-parameter Hermite polynomials (2V1PHP)”, represented as Dn(ν1, ν2,C),
are defined using the subsequent generating function [4]:

Cν1ξ+ν2ξ
2

=

∞∑
n=0

Dn(ν1, ν2,C)
ξn

n!
, C > 1. (1.2)

The “3-variable Hermite polynomials (3VHP)”, denoted as Dn(ν1, ν2, ν3) [5], are characterized by
the following generating function:

eν1ξ+ν2ξ
2+ν3ξ

3
=

∞∑
n=0

Dn(ν1, ν2, ν3)
ξn

n!
. (1.3)

Further motivated by expressions (1.2) and (1.3), we give following representation to
the “generalized 3-variable 1-parameter Hermite polynomials (g1P3VHP)”, represented as
Dn(ν1, ν2, ν3,C) defined by:

Cν1ξ+ν2ξ
2+ν3ξ

3
=

∞∑
n=0

Dn(ν1, ν2, ν3,C)
ξn

n!
, C > 1. (1.4)

The first few values ofDn(ν1, ν2, ν3,C) are:

D0(ν1, ν2, ν3,C) = 1,

D1(ν1, ν2, ν3,C) = ν1 lnC,

D2(ν1, ν2, ν3,C) =
(ν1 lnC)2

2
+ ν2 lnC,

D3(ν1, ν2, ν3,C) =
(ν1 lnC)3

6
+

(ν1 lnC)(ν2 lnC)
2

+ ν3 lnC.

In their 3-variable formulation, these polynomials find widespread application across numerous
fields in both pure and applied mathematics and physics. They serve as fundamental tools in addressing
problems ranging from Laplace’s equation in parabolic coordinates to various quantum mechanics and
probability theory scenarios. Notably, for any integral value of n, these polynomials represent specific
solutions to the heat or generalized heat problem facilitated by the corresponding existence of Gauss-
Weierstrass transforms.

Appell polynomials, named after the French mathematician Paul Appell [6], constitute a significant
class of special functions in mathematical analysis. They are typically defined as solutions to
certain differential equations, often arising in studying various physical and mathematical phenomena.
Appell polynomials possess distinctive properties, including recurrence relations, generating function,
and explicit formulas, which render them invaluable in diverse areas such as probability theory,
mathematical physics, and combinatorics. These polynomials exhibit remarkable versatility as
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fundamental tools for formulating and solving differential equations, integral transforms, and other
mathematical problems. Their rich structure and wide-ranging applications make Appell polynomials
an indispensable subject of study in modern mathematics. The generating relation gives the Appell
polynomials:

R(ξ)eν1ξ =

∞∑
r=0

Rr(ν1)
ξr

r!
, (1.5)

where,

R(ξ) =

∞∑
r=0

Rr
ξr

r!
; R0 , 0. (1.6)

Within the context of contemporary classical umbral calculus pioneered by Roman [7], the intrinsic
characteristics of Appell sequences are seamlessly managed. Notably, the entire collection of Appell
sequences exhibits closure properties when subjected to the operation of the umbral composition
of polynomial sequences. This phenomenon extends to form an abelian group, accentuating the
structural coherence and algebraic integrity inherent within Appell sequences. Further, Non-separable
polynomials like multivariate Appell polynomials have several potential application benefits. In many
real-world problems, variables are interdependent rather than independent. Non-separable polynomials
can naturally capture these interactions without forcing an artificial separation of variables, (see for
instance [8,9]). This can be particularly useful in fields like physics, economics, and machine learning,
where interactions between variables are critical. Non-separable polynomials provide a richer set of
functional forms, allowing for more flexible modeling of complex relationships. This can lead to
better fitting models in regression analysis and more accurate representations of multidimensional
phenomena. These polynomials can naturally represent higher-order interactions between variables,
which can be difficult to capture with separable polynomials. This feature is valuable in scenarios
where the combined effect of multiple variables is non-trivial.

Consider {Ψn(ν1)}∞n=0, which signifies a series of polynomials, we can observe that

deg(Ψn(ν1)) = n, (n ∈ N0 := {0, 1, 2, · · · }.

The differential operatorsZ−n andZ+
n meeting the criteria

Z−n {Ψn(ν1)} = Ψn−1(ν1), (1.7)

Z+
n {Ψn(ν1)} = Ψn+1(ν1) (1.8)

are referred to as multiplicative and derivative operators. {Ψn(ν1)}∞n=0 is a series of polynomials that is
considered quasi-monomial if and only if Eqs (1.7) and (1.8) hold, [10–14]. A differential equation
like this can be found by finding the derivative and multiplicative operators for a given polynomial
family as

(Z−n+1Z
+
n ){Ψn(ν1)} = nΨn(ν1). (1.9)

The factorization technique is the name given to this process. Determining the multiplicative
operator Z+

n and the derivative operator Z−n forms the basis of the factorization approach [15–18].
The monomiality principle is another way to think about this method. When the factorization approach
is applied to the domain of multivariable special functions, new analytical techniques are presented to
solve a wide variety of partial differential equations frequently encountered in practical situations.
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Differential equations cover a wide range of topics in “physics, engineering, and pure and applied
mathematics”. Problems from various scientific and technical fields typically take the form of
differential equations, solved using specialized functions. Differential equation theory has attracted
renewed attention in the last thirty years due to developments in nonlinear analysis, dynamical systems,
and their useful applications in science and engineering.

Several studies employing different generating function approaches and analytical procedures have
been conducted to present and analyze hybrid families of special polynomials methodically [19–
21]. The “recurrence relations, explicit relations, functional and differential equations, summation
formulae, symmetric and convolution identities, and determinant techniques” are just a few of the
fundamental characteristics of multi-variable hybrid special polynomials that make them important.
“Number theory, combinatorics, classical and numerical analysis, theoretical physics, approximation
theory, and other fields of pure and practical mathematics” are just a few of the fields in which these
polynomials can be useful to researchers. Various scientific areas can use the qualities of hybrid special
polynomials to address new problems.

The article is organized as follows: In Section 2, we provide an overview for the 3-variable 1-
parameter generalized Hermite-based Appell polynomials using the determinant formulation, series
definition, and generating function. We also describe how to derive the related differential,
integrodifferential, and partial differential equations. In order to demonstrate the usefulness of the
major conclusions, we examine instances from this polynomial family in Section 3. In Section 4,
we investigate specific cases of the 1-parameter, 3-variable, generalized Hermite-based Appell
polynomials. Finally, the last part contains closing thoughts.

2. Polynomials based on generalized Hermite polynomials with three variables and one
parameter

In this section, we introduce a hybrid family known as the generalized 3-variable 1-
parameter Hermite-based Appell polynomials (g3V1PHAP). Additionally, various properties of these
polynomials are established. To obtain the generating function for the g3V1PHAP, a key result is
demonstrated as follows:

Theorem 2.1. For the generalized 3-variable 1-parameter Hermite-based Appell polynomials
DRn(ν1, ν2, ν3;C), the succeeding generating relation is demonstrated:

R(ξ)Cν1ξ+ν2ξ
2+ν3ξ

3
=

∞∑
n=0

DRn(ν1, ν2, ν3;C)
ξn

n!
, C > 1, |ξ| < 1, (2.1)

or, equivalently

R(ξ)elnC(ν1ξ+ν2ξ
2+ν3ξ

3) =

∞∑
n=0

DRn(ν1, ν2, ν3;C)
ξn

n!
, C > 1. (2.2)

Proof. Substituting the exponents of ξ, i.e., ν0
1, ν1

1, ν2
1, · · · , ν

n
1 in the expansion of eν1ξ by the

polynomials DR0(ν1, ν2, ν3;C), DR2(ν1, ν2, ν3;C), · · · ,DRn(ν1, ν2, ν3;C) in the left-hand part and ν1

by DR1(ν1, ν2, ν3;C) in right-hand part of the expression (1.5), further adding up the expressions in
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left-hand part of the resultant expression, we have

R(ξ)
∞∑

n=0

Dn(ν1, ν2, ν3;C)
ξn

n!
=

∞∑
n=0

Rn(D1(ν1, ν2, ν3;C))
ξn

n!
, (2.3)

which indicates the resulting g3V1PHAP in the r.h.s. by applying Eq (1.3) in the l.h.s. DRn(ν1, ν2, ν3;C)
that is

DRn(ν1, ν2, ν3;C) := Rn{D1(ν1, ν2, ν3;C)},

leading to (2.1). The generating function (2.2) is obtained by simplifying the l.h.s. of Eq (2.1). �

The following theorem gives the series definition for the g3V1PHAP DRn(ν1, ν2, ν3;C):

Theorem 2.2. For the g3V1PHAP DRn(ν1, ν2, ν3;C), the succeding series representation is
demonstrated

DRn(ν1, ν2, ν3;C) = n!
[n/3]∑
k=0

DRn−3k(ν1, ν2)νk
3

(n − 3k)! k!
(lnC)n−2k, (2.4)

where

R(ξ) Cν1ξ+ν2ξ
2

=

∞∑
n=0

DRn(ν1, ν2)
lnCξn

n!
.

Proof. Inserting the expressions (1.2) and expansion of elnC(ν3ξ
3) in left hand part of the expression (2.1)

or (2.2), it follows that
∞∑

n=0
DRn(ν1, ν2, ν3;C)

ξn

n!
=

∞∑
n=0

DRn(ν1, ν2)
(lnC ξ)n

n!

∞∑
k=0

νk
3
(lnC ξ3)k

k!
, (2.5)

thus, operating the Cauchy-product rule yields the expression:
∞∑

n=0
DRn(ν1, ν2, ν3;C)

ξn

n!
=

∞∑
n=0

[n/3]∑
k=0

n!
DRn−3k(ν1, ν2)νk

3

(n − 3k)! k!
(lnC)n−2k ξ

n

n!
. (2.6)

Assertion (2.4) is obtained by comparing the coefficients of the identical powers of ξ on both sides of
the above expression. �

In order to give the determinant definition for the g3V1PHAP DRn(ν1, ν2, ν3;C), we demonstrate the
succeeding result.

Theorem 2.3. The g3V1PHAP DRn(ν1, ν2, ν3;C) of degree n give rise to the succeeding determinant
representation:

DR0(ν1, ν2, ν3;C) = 1
δ0
,

DRn(ν1, ν2, ν3;C) =
(−1)n

(δ0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 D1(ν1, ν2, ν3;C) D2(ν1, ν2, ν3;C) · · · Dn−1(ν1, ν2, ν3;C) Dn(ν1, ν2, ν3;C)

δ0 δ1 δ2 · · · δn−1 δn

0 δ0

(
2
1

)
δ1 · · ·

(
n−1

1

)
δn−2

(
n
1

)
δn−1

0 0 δ0 · · ·
(

n−1
2

)
δn−3

(
n
2

)
δn−2

. . . · · · . .

. . . · · · . .

0 0 0 · · · δ0

(
n

n−1

)
δ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
(2.7)
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where n = 1, 2, · · · ; δ0, δ1, · · · , δn ∈ R; δ0 , 0 and

δ0 = 1
R0
,

δn = − 1
R0

( n∑
k=1

(
n
k

)
γk δn−k

)
, n = 1, 2, · · · , (2.8)

andDn(ν1, ν2, ν3;C) is defined in (1.4) and R(ξ) in (1.6).

Proof. Consider γn and δn two numerical sequences with

R(ξ) = γ0 +
ξ

1!
γ1 +

ξ2

2!
γ2 + · · · +

ξn

n!
γn + · · · , n = 0, 1, · · · ; γ0 , 0, (2.9)

R̂(ξ) = δ0 +
ξ

1!
δ1 +

ξ2

2!
δ2 + · · · +

ξn

n!
δn + · · · , n = 0, 1, · · · ; δ0 , 0, (2.10)

satisfying

R(ξ)R̂(ξ) = 1. (2.11)

Consideration of the Cauchy-product rule yields:

R(ξ)R̂(ξ) =

∞∑
n=0

n∑
k=0

(
n
k

)
γk δn−k

ξn

n!
, (2.12)

thus producing
n∑

k=0

(
n
k

)
γk δn−k =

1 for n = 0,
0 for n > 0.

(2.13)

Therefore 
δ0 = 1

γ0
,

δn = − 1
γ0

( n∑
k=1

(
n
k

)
γk δn−k

)
, n = 1, 2, · · · .

(2.14)

By multiplying expression (2.1) by R̂(ξ) on both sides, it follows that

R(ξ)R̂(ξ)Cν1ξ+ν2ξ
2+ν3ξ

3
= R̂(ξ)

∞∑
n=0

DRn(ν1, ν2, ν3;C)
ξn

n!
. (2.15)

Thus, in consideration of the expressions (1.4), (2.10) and (2.11), it follows that

∞∑
n=0

H(m)
n (ν1, ν2, ν3,C)

ξn

n!
=

∞∑
n=0

DRn(ν1, ν2, ν3,C)
ξn

n!

∞∑
k=0

δk
ξk

k!
. (2.16)

Applying the Cauchy-product approach to the series on the r.h.s. of Eq (2.16), the preceding equality
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yields the following system of infinite equations in the unknowns DRn(ν1, ν2, ν3,C), n = 0, 1, · · · :

DR0(ν1, ν2, ν3,C)δ0 = 1,

DR0(ν1, ν2, ν3,C)δ1 + DR1(ν1, ν2, ν3,C)δ0 = D1(ν1, ν2, ν3,C),

DR0(ν1, ν2, ν3,C)δ2 +
(

2
1

)
DR1(ν1, ν2, ν3,C)δ1 + DR2(ν1, ν2, ν3,C)δ0 = D2(ν1, ν2, ν3,C),

...

DR0(ν1, ν2, ν3,C)δn +
(

n
1

)
DR1(ν1, ν2, ν3,C)δn−1 + · · · + DRn(ν1, ν2, ν3,C)δ0 = Dn(ν1, ν2, ν3,C),

...
(2.17)

From the initial equation in system (2.17), we derive the first segment of assertion (2.7). Furthermore,
the particular configuration of system (2.17) (lower triangular form) allows us to ascertain the
unknowns DRn(ν1, ν2, ν3,C). Using Cramer’s rule to solve the first n + 1 expressions, we arrive at:

DRn(ν1, ν2, ν3,C) = 1
δn+1

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ0 0 0 · · · 0 1

δ1 δ0 0 · · · 0 D1(ν1, ν2, ν3,C)

δ2

(
2
1

)
δ1 δ0 · · · 0 D2(ν1, ν2, ν3,C)

. . . · · · . .

δn−1

(
n−1

1

)
δn−2

(
n−1

2

)
δn−3 · · · δ0 Dn−1(ν1, ν2, ν3,C)

δn

(
n
1

)
δn−1

(
n
2

)
δn−2 · · ·

(
n

n−1

)
δ1 Dn(ν1, ν2, ν3,C)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.18)

We now acquire the second part of statement (2.7) by transferring the (n + 1)-th column to the first
position by n adjacent column transpositions and realising that the determinant of a square matrix
equals that of its transpose. �

3. Recurrence relations and shift operators

Theorem 3.1. The g3V1PHAP DRn(ν1, ν2, ν3,C) adhere to the succeeding recurrence relation:

DRn+1(ν1, ν2, ν3,C) = (ν1 lnC + γ0) DRn(ν1, ν2, ν3,C) +
n∑

k=1

(
n
k

)
γk DRn−k(ν1, ν2, ν3,C)

+2nν2 lnCDRn−1(ν1, ν2, ν3,C) + 3n(n − 1)ν3 lnCDRn−2(ν1, ν2, ν3,C),
(3.1)

where
DR−k(ν1, ν2, ν3,C) := 0, k = 1, 2, · · · (3.2)

and the following expansion yields the coefficients {γk}k∈N0:

R′(ξ)
R(ξ)

=

∞∑
n=0

γn
ξn

n!
. (3.3)
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Proof. After taking ξ into account and differentiating both sides of the generating function (2.1), we
arrive at:

∂

∂ξ

{
R(ξ)Cν1ξ+ν2ξ

2+ν3ξ
3

}
=

∂

∂ξ

{ ∞∑
n=0

DRn(ν1, ν2, ν3;C)
ξn

n!

}
(3.4)

which can be simplified as{
R′(ξ)
R(ξ)

+ ν1 ln(C) + 2ν2 ln(C)ξ + 3ν3 ln(C)ξ2
} ∞∑

n=0
DRn+1(ν1, ν2, ν3;C)

ξn

n!
=

∞∑
n=0

n DRn(ν1, ν2, ν3;C)
ξn−1

n!
.

Further, the preceding expression in consideration of the Cauchy-Product formula can be expressed as

∞∑
n=0

[ n∑
k=0

(
n
k

)
γk DRn−k(ν1, ν2, ν3;C) + ν1 ln(C)DRn(ν1, ν2, ν3;C) + 2nν2 ln(C)DRn−1(ν1, ν2, ν3;C)

+3n(n − 1)ν3 ln(C)DRn−2(ν1, ν2, ν3;C)
]
DRn(ν1, ν2, ν3;C)

ξn

n!
=

∞∑
n=0

DRn+1(ν1, ν2, ν3;C)
ξn

n!
. (3.5)

Assertion (3.1) is obtained by comparing the coefficients of the identical powers of ξ on both sides of
the preceding statement. �

Theorem 3.2. The g3V1PHAP DRn(ν1, ν2, ν3,C) adhere to the succeeding shift operators:

ν1L
−
n :=

1
n(lnC)

Dν1 , (3.6)

ν2L
−
n :=

1
n(lnC)

D−1
ν1

Dν2 , (3.7)

ν3L
−
n :=

1
n(lnC)

D−2
ν1

Dν3 , (3.8)

ν1L
+
n := (ν1 lnC + γ0) +

n∑
k=1

γk

k!
(lnC)−kDk

ν1
+ 2ν2Dν1 + 3ν3(lnC)−1D2

ν1
, (3.9)

ν2L
+
n := (ν1 lnC + γ0) +

n∑
k=1

γk

k!
(lnC)−kD−k

ν1
Dk
ν2

+ 2ν2D−1
ν1

Dν2 + 3ν3(lnC)−1D−2
ν1

D2
ν2
, (3.10)

and

ν3L
+
n := (ν1 lnC + γ0) +

n∑
k=1

γk

k!
(lnC)−kD−k

ν1
Dk
ν3

+ 2ν2D−1
ν1

Dν3 + 3ν3(lnC)−1D−4
ν1

D2
ν3

(3.11)

respectively, where

Dν1 :=
∂

∂ν1

, Dν2 :=
∂

∂ν2

; Dν3 :=
∂

∂ν3

D−1
ν1

:=

ν1∫
0

g(ξ)dξ. (3.12)
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Proof. After rearranging the powers and differentiating both sides of Eq (2.1) concerning ν1, we equate
the coefficients of the identical powers of ξ in both sides of the resulting equation as follows:

Dν1{DRn(ν1, ν2, ν3,C)} = n(lnC)DRn−1(ν1, ν2, ν3,C), (3.13)

as a result, the operator provided by Eq (3.6) satisfies equation

ν1L
−
n {DRn(ν1, ν2, ν3,C)} = DRn−1(ν1, ν2, ν3,C). (3.14)

Subsequently, we differentiate both sides of Eq (2.1) concerning ν2, rearrange the powers, and then
calculate the coefficients of the identical powers of ξ on both sides of the resulting equation gives:

Dν2{DRn(ν1, ν2, ν3,C)} = (lnC)n(n − 1)DRn−2(ν1, ν2, ν3,C), (3.15)

which further can be stated as

Dν2{DRn(ν1, ν2, ν3,C)} = n(lnC)Dν1DRn−1(ν1, ν2, ν3,C), (3.16)

thus, it follows that

1
n(lnC)

Dν2 D−1
ν1
{DRn(ν1, ν2, ν3,C)} = DRn−1(ν1, ν2, ν3,C). (3.17)

Thus, the above equation is satisfied by the operator provided by Eq (3.7).
Again differentiating both sides of Eq (2.1) with respect to ν3, we have

Dν3{DRn(ν1, ν2, ν3,C)} = (lnC)n(n − 1)(n − 2)DRn−3(ν1, ν2, ν3,C) (3.18)

and further stated as

Dν3{DRn(ν1, ν2, ν3,C)} = n(lnC)D2
ν1D
Rn−1(ν1, ν2, ν3,C), (3.19)

thus, it follows that

1
n(lnC)

Dν3 D−2
ν1
{DRn(ν1, ν2, ν3,C)} = DRn−1(ν1, ν2, ν3,C). (3.20)

Thus, the above equation is satisfied by the operator provided by Eq (3.8).
The raising operator (3.9) may be found using the following relation:

DRn−k(ν1, ν2, ν3,C) =
(
ν1L

−
n−k+1 ν1L

−
n−k+2 · · · ν1L

−
n−1 ν1L

−
n
)
{DRn(ν1, ν2, ν3,C)}. (3.21)

Using Eq (3.6) in conjunction with Eq (3.21), we obtain

DRn−k(ν1, ν2, ν3,C)

=

(
1

(n − k + 1)(lnC)
Dν1 · · ·

1
(n − 1)(lnC)

Dν1

1
n(lnC)

Dν1

)
{DRn(ν1, ν2, ν3,C)} (3.22)
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and further casted as

DRn−k(ν1, ν2, ν3,C) =
(n − k)!

n!
(lnC)−kDk

ν1
{DRn(ν1, ν2, ν3,C)}. (3.23)

Further, we have

DRn−1(ν1, ν2, ν3,C) =
1
n

(lnC)−1Dν1{DRn(ν1, ν2, ν3,C)}. (3.24)

Thus inserting expressions (3.21) and (3.23) in Eq (3.1), we find

DRn+1(ν1, ν2, ν3,C) =

(ν1 lnC + γ0) +

n∑
k=1

γk

k!
(lnC)−kD−k

ν1
Dk
ν2

+ 2ν2D−1
ν1

Dν2 + 3ν3(lnC)−1D−2
ν1

D2
ν2


× {DRn(ν1, ν2, ν3,C)}, (3.25)

thus yielding the expression (3.9) of the raising operator ν1L
+
n .

We employ the relation below to determine the raising operator (3.10):

DRn−k(ν1, ν2, ν3,C) =
(
ν2L

−
n−k+1 ν2L

−
n−k+2 · · · ν2L

−
n−1 ν2L

−
n
)
{DRn(ν1, ν2, ν3,C)}. (3.26)

Using Eq (3.7) in Eq (3.26) and simplifying, we find

DRn−k(ν1, ν2, ν3,C) =
(n − k)!

n!
(lnC)−kD−k

ν1
Dk
ν2
{DRn(ν1, ν2, ν3,C)}. (3.27)

Also, we have

DRn−1(ν1, ν2, ν3,C) =
1
n

(lnC)−1D−1
ν1

Dν2{DRn(ν1, ν2, ν3,C)}. (3.28)

Using Eqs (3.27) and (3.28) in Eq (3.1), we find

DRn+1(ν1, ν2, ν3,C) =

(
(ν1 lnC + γ0) +

n∑
k=1

γk
k! (lnC)−kD−k

ν1
Dk
ν2

+ 2ν2D−1
ν1

Dν2 + 3ν3(lnC)−1D−2
ν1

D2
ν2

)
× DRn(ν1, ν2, ν3,C),

(3.29)
thus yielding the expression (3.10) of the raising operator ν2L

+
n .

Last, we employ the relation below to determine the raising operator (3.11):

DRn−k(ν1, ν2, ν3,C) =
(
ν3L

−
n−k+1 ν3L

−
n−k+2 · · · ν3L

−
n−1 ν3L

−
n
)
{DRn(ν1, ν2, ν3,C)} (3.30)

Using Eq (3.8) in Eq (3.30) and simplifying, we find

DRn−k(ν1, ν2, ν3,C) =
(n − k)!

n!
(lnC)−kD−2k

ν1
Dk
ν2
{DRn(ν1, ν2, ν3,C)}. (3.31)

Also, we have

DRn−1(ν1, ν2, ν3,C) =
1
n

(lnC)−1D−2
ν1

Dν3{DRn(ν1, ν2, ν3,C)}. (3.32)

Using Eqs (3.31) and (3.32) in Eq (3.1), we find

DRn+1(ν1, ν2, ν3,C) =

(
(ν1 lnC + γ0) +

n∑
k=1

γk
k! (lnC)−kD−k

ν1
Dk
ν3

+ 2ν2D−1
ν1

Dν3 + 3ν3(lnC)−1D−4
ν1

D2
ν3

)
× DRn(ν1, ν2, ν3,C),

(3.33)
thus yielding the expression (3.11) of the raising operator ν3L

+
n .

�
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Next, we find the “differential, integrodifferential and partial differential equation” for the
3V1PGHbAP DRn(ν1, ν2, ν3,C). For this, we consider the following results:

Theorem 3.3. The generalized 3-variable 1-parameter Hermite-based Appell polynomials
DRn(ν1, ν2, ν3,C) satisfy the following differential equation:(ν1 +

γ0

lnC

)
Dν1 +

n∑
k=1

γk

k!
(lnC)−k−1Dk+1

ν1
+ 2ν2(lnC)−1D2

ν1
+ 3ν3(lnC)−2D3

ν1
− (n + 1)


× DRn(ν1, ν2, ν3,C) = 0. (3.34)

Proof. Making use of expressions (3.6) and (3.8) of the shift operators ν1L
−
n and ν1L

+
n in the

factorization equation

ν1L
−
n+1 ν1L

+
n {DRn(ν1, ν2, ν3,C)} = DRn(ν1, ν2, ν3,C),

we adhere to the expression (3.34). �

Theorem 3.4. The generalized 3-variable 1-parameter Hermite-based Appell polynomials
DRn(ν1, ν2, ν3,C) satisfy the following integrodifferential equations:(ν1 +

γ0

lnC

)
Dν2 +

n∑
k=1

γk

k!
(lnC)−k−1D−k

ν1
Dk+1
ν2

+ 2ν2(lnC)−1D−1
ν1

D2
ν2

+ 3ν3(lnC)−2D−2
ν1

D3
ν2
− (n + 1)Dν1


× DRn(ν1, ν2, ν3,C) = 0,

(3.35)(ν1 +
γ0

lnC

)
Dν3 +

n∑
k=1

γk

k!
(lnC)−k−1D−k

ν1
Dk+1
ν3

+ 2ν2(lnC)−1D−1
ν1

D2
ν3

+ 3ν3(lnC)−2D−4
ν1

D3
ν3
− (n + 1)D2

ν1


× DRn(ν1, ν2, ν3,C) = 0,

(3.36)((
ν1 +

γ0

lnC

)
Dν3 +

n∑
k=1

γk

k!
(lnC)−k−1D−k

ν1
Dk
ν2

Dν3 + 2ν2(lnC)−1D−1
ν1

D2
ν2

Dν3 + 3ν3(lnC)−2D−2
ν1

D3
ν2

Dν3

−(n + 1)D2
ν1

)
DRn(ν1, ν2, ν3,C) = 0,

(3.37)((
ν1 +

γ0

lnC

)
Dν2 +

n∑
k=1

γk

k!
(lnC)−k−1D−k

ν1
Dν2 Dk

ν3
+ 2ν2(lnC)−1D−1

ν1
Dν2 Dν3 + 3ν3(lnC)−2D−4

ν1
Dν2 D2

ν3

−(n + 1)Dν1

)
DRn(ν1, ν2, ν3,C) = 0.

(3.38)

Proof. Making use of expressions (3.7), (3.10) and (3.8), (3.11) of the shift operators L−n and L+
n in the

factorization equation
L−n+1 L

+
n {DRn(ν1, ν2, ν3,C)} = DRn(ν1, ν2, ν3,C),
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we adhere to the expression (3.35) and (3.36).
Further, making use of expressions (3.7), (3.11) and (3.8), (3.10) of the shift operators L−n and L+

n

in above factorization relation, we adhere to the expression (3.37) and (3.38). �

Theorem 3.5. The generalized 3-variable 1-parameter Hermite-based Appell polynomials
DRn(ν1, ν2, ν3,C) satisfy the following partial differential equations:((

ν1 +
γ0

lnC

)
Dn
ν1

Dν2 + nDn−1
ν1

Dν2 +

n∑
k=1

γk

k!
(lnC)−k−1Dn−k

ν1
Dk+1
ν2

+ 2ν2(lnC)−1Dn−1
ν1

D2
ν2

+ 3ν3(lnC)−2Dn−2
ν1

D3
ν2
− (n + 1)Dn+1

ν1

)
DRn(ν1, ν2, ν3,C) = 0. (3.39)

((
ν1 +

γ0

lnC

)
D2n
ν1

Dν3 + 2nD2n−1
ν1

Dν3 +

n∑
k=1

γk

k!
(lnC)−k−1D2n−2k

ν1
Dk+1
ν3

+ 2ν2(lnC)−1D2n−1
ν1

D2
ν3

+ 3ν3(lnC)−2

× D2n−4
ν1

D3
ν3
− (n + 1)D2n+2

ν1

)
DRn(ν1, ν2, ν3,C) = 0. (3.40)

((
ν1 +

γ0

lnC

)
Dn
ν1

Dν3 + nDn−1
ν1

Dν3 +

n∑
k=1

γk

k!
(lnC)−k−1Dn−k

ν1
Dk
ν2

Dν3 + 2ν2(lnC)−1Dn−1
ν1

D2
ν2

Dν3

+ 3ν3(lnC)−2Dn−2
ν1

D3
ν2

Dν3 − (n + 1)Dn+2
ν1

)
DRn(ν1, ν2, ν3,C) = 0. (3.41)

((
ν1 +

γ0

lnC

)
D2n
ν1

Dν2 + 2nD2n−1
ν1

Dν2 +

n∑
k=1

γk

k!
(lnC)−k−1D2n−k

ν1
Dν2 Dk

ν3
+ 2ν2(lnC)−1

× D2n−1
ν1

Dν2 Dν3 + 3ν3(lnC)−2D2n−4
ν1

Dν2 D2
ν3
− (n + 1)D2n+1

ν1

)
DRn(ν1, ν2, ν3,C) = 0. (3.42)

Proof. Differentiating the expressions (3.35) and (3.37) w.r.t. Dν1 n times, we get the partial differential
equations (3.39) and (3.41). Similarly, upon differentiating the expressions (3.36) and (3.38) w.r.t. Dν1

2n times, we get the partial differential equations (3.40) and (3.42). �

A few instances of how the above-derived results are applied are given in the next section.

4. Applications

By carefully choosing the function R(ξ), various distinct members within the extensive family
of Appell polynomials can be derived. This flexibility allows for the customization of polynomial
solutions tailored to specific mathematical or practical requirements, catering to diverse applications
across numerous domains. This is because of its versatility, enabling researchers and practitioners
to access a rich spectrum of polynomial functions, each suited to address different mathematical
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problems or modeling scenarios. The Bernoulli, Euler, and Genocchi polynomials are pivotal in
numerous expansions and approximation formulas, serving as valuable assets in the analytical theory
of numbers and classical and numerical analysis. Their significance extends to addressing a myriad
of challenges in engineering and physics. These polynomials and numbers provide essential tools
for mathematical research and problem-solving. The Appell polynomial family, combined with the
data shown in Table 1, makes up a useful and strong instrument in the toolbox of scientists and
mathematicians. They provide a modifiable problem-solving method by offering specialized answers
to particular mathematical difficulties in various academic fields.

Table 1. Several members of the Appell polynomial family.

S. Name of the R(ξ) Generating expression Series representation
No. polynomials and

related numbers

I. Bernoulli
(

ξ

eξ−1

) (
ξ

eξ−1

)
eν1ξ =

∞∑
k=0
Bk(ν1) ξ

k

k! Bk(ν1) =
k∑

m=0

(
k
m

)
Bmξ

k−m

polynomials
(

ξ

eξ−1

)
=
∞∑

k=0
Bk

ξk

k!

and numbers [22] Bk := Bk(0)

II. Euler
(

2
eξ+1

) (
2

eξ+1

)
eν1ξ =

∞∑
k=0
Ek(ν1) ξ

k

k! Ek(ν1) =
k∑

m=0

(
k
m

)
Em
2m

(
ξ − 1

2

)k−m

polynomials 2ξ
e2ξ+1 =

∞∑
k=0
Ek

ξk

k!

and numbers [22] Ek := 2kEk

(
1
2

)
III. Genocchi

(
2ξ

eξ+1

) (
2ξ

eξ+1

)
eν1ξ =

∞∑
k=0
Gk(ν1) ξ

k

k! Gk(ν1) =
k∑

m=0

(
k
m

)
Gmξ

k−m

polynomials 2ξ
eξ+1 =

∞∑
k=0
Gk

ξk

k!

and numbers [23] Gk := Gk(0)

The “generating function, series definition, recurrence relation, shift operators, as well as the
differential, integrodifferential, and partial differential equations” for certain members of the 3-variable,
1-parameter generalized Hermite-based Appell polynomials DRn(ν1, ν2, ν3,C) is derived by examining
the following examples:

Example 4.1. Consider (
ξ

eξ − 1

)
= R(ξ)

in generating function (2.1), the 3V1PGHbAP DRn(ν1, ν2, ν3,C) reduces to the 3-variable 1-parameter
generalized Hermite-based Bernoulli polynomials (3V1PGHbBP) DBn(ν1, ν2, ν3,C) defined by the
following generating function:

(
ξ

eξ − 1

)
Cν1ξ+ν2ξ

2+ν3ξ
3

=

∞∑
n=0

DBn(ν1, ν2, ν3;C)
ξn

n!
, C > 1, |ξ| < 2π, (4.1)
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or, equivalently(
ξ

eξ − 1

)
elnC(ν1ξ+ν2ξ

2+ν3ξ
3) =

∞∑
n=0

DBn(ν1, ν2, ν3;C)
ξn

n!
, C > 1, |ξ| < 2π. (4.2)

Further, the remaining corresponding results for the 3-variable 1-parameter generalized Hermite-based
Bernoulli polynomials (3V1PGHbBP) DBn(ν1, ν2, ν3,C) are established by setting similar substitutions
in the following manner:

The 3-variable 1-parameter generalized Hermite-based Bernoulli polynomials DBn(ν1, ν2, ν3;C) are
defined by the following series definition:

DBn(ν1, ν2, ν3;C) = n!
[n/3]∑
k=0

DBn−3k(ν1, ν2)νk
3

(n − 3k)! k!
(lnC)n−2k, (4.3)

where (
ξ

eξ − 1

)
Cν1ξ+ν2ξ

2
=

∞∑
n=0

DBn(ν1, ν2)
lnCξn

n!
.

Next, setting δ0 = 1 and δi = 1
i+1 (i = 1, 2, · · · , n) in expression (2.7), the 3-variable 1-parameter

generalized Hermite-based Bernoulli polynomials DBn(ν1, ν2, ν3;C) of degree n are defined by the
following determinant definition:

DB0(ν1, ν2, ν3;C) = 1
δ0
,

DBn(ν1, ν2, ν3;C) =
(−1)n

(δ0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 D1(ν1, ν2, ν3;C) D2(ν1, ν2, ν3;C) · · · Dn−1(ν1, ν2, ν3;C) Dn(ν1, ν2, ν3;C)

1 1
2

1
3 · · · 1

n
1

n+1

0 1
(

2
1

)
1
2 · · ·

(
n−1

1

)
1

n−1

(
n
1

)
1
n

0 0 1 · · ·
(

n−1
2

)
1

n−2

(
n
2

)
1

n−1
...

...
... · · ·

...
...

0 0 0 · · · 1
(

n
n−1

)
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
(4.4)

Also, the 3-variable, 1-parameter generalized Hermite-based Bernoulli polynomials
DBn(ν1, ν2, ν3,C) adhere to the following recurrence relation and shift operators:

DBn+1(ν1, ν2, ν3,C) = (ν1 lnC − 1
2 ) DRn(ν1, ν2, ν3,C) −

n∑
k=1

(
n
k

)
Bk+1(1)

k+1 DBn−k(ν1, ν2, ν3,C)

+2nν2 lnCDBn−2(ν1, ν2, ν3,C) + 3n(n − 1)ν3 lnCDBn−2(ν1, ν2, ν3,C),
(4.5)

where
R
′

(ξ)
R(ξ)

= −

∞∑
n=0

Bn+1(1)
n + 1

ξn

n!
,

thus using (3.3), we find
∞∑

n=0

γn
ξn

n!
= −

∞∑
n=0

Bn+1(1)
n + 1

ξn

n!
,
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which impliesγn = −
Bn+1(1)

n+1 ; γ0 = −1
2 .

ν1L
−
n :=

1
n(lnC)

Dν1 , (4.6)

ν2L
−
n :=

1
n(lnC)

D−1
ν1

Dν2 , (4.7)

ν3L
−
n :=

1
n(lnC)

D−2
ν1

Dν3 , (4.8)

ν1L
+
n := (ν1 lnC −

1
2

) −
n∑

k=1

(
n
k

)
Bk+1(1)
k + 1

(lnC)−kDk
ν1

+ 2ν2Dν1 + 3ν3(lnC)−1D2
ν1
, (4.9)

ν2L
+
n := (ν1 lnC −

1
2

) −
n∑

k=1

(
n
k

)
Bk+1(1)
k + 1

(lnC)−kD−k
ν1

Dk
ν2

+ 2ν2D−1
ν1

Dν2 + 3ν3(lnC)−1D−2
ν1

D2
ν2
, (4.10)

and

ν3L
+
n := (ν1 lnC −

1
2

) −
n∑

k=1

(
n
k

)
Bk+1(1)
k + 1

(lnC)−kD−k
ν1

Dk
ν3

+ 2ν2D−1
ν1

Dν3 + 3ν3(lnC)−1D−4
ν1

D2
ν3
. (4.11)

Finally, the 3-variable 1-parameter generalized Hermite-based Bernoulli polynomials
DBn(ν1, ν2, ν3,C) satisfy the following differential, integrodifferential and partial differential equations:((

ν1 −
1

2 lnC

)
Dν1 −

n∑
k=1

(
n
k

)
Bk+1(1)
k + 1

(lnC)−k−1Dk+1
ν1

+ 2ν2(lnC)−1D2
ν1

+ 3ν3(lnC)−2D3
ν1
− (n + 1)

)
DRn(ν1, ν2, ν3,C) = 0,((

ν1 −
1

2 lnC

)
Dν2 −

n∑
k=1

(
n
k

)
Bk+1(1)
k + 1

(lnC)−k−1D−k
ν1

Dk+1
ν2

+ 2ν2(lnC)−1D−1
ν1

D2
ν2

+ 3ν3(lnC)−2D−2
ν1

D3
ν2

− (n + 1)Dν1

)
DBn(ν1, ν2, ν3,C) = 0,((

ν1 −
1

2 lnC

)
Dν3 −

n∑
k=1

(
n
k

)
Bk+1(1)
k + 1

(lnC)−k−1D−k
ν1

Dk+1
ν3

+ 2ν2(lnC)−1D−1
ν1

D2
ν3

+ 3ν3(lnC)−2D−4
ν1

D3
ν3

− (n + 1)D2
ν1

)
DBn(ν1, ν2, ν3,C) = 0,((

ν1−
1

2 lnC

)
Dν3 −

n∑
k=1

(
n
k

)
Bk+1(1)
k + 1

(lnC)−k−1D−k
ν1

Dk
ν2

Dν3 +2ν2(lnC)−1D−1
ν1

D2
ν2

Dν3 +3ν3(lnC)−2D−2
ν1

D3
ν2

Dν3

− (n + 1)D2
ν1

)
DBn(ν1, ν2, ν3,C) = 0,((

ν1−
1

2 lnC

)
Dν2 −

n∑
k=1

(
n
k

)
Bk+1(1)
k + 1

(lnC)−k−1D−k
ν1

Dν2 Dk
ν3

+2ν2(lnC)−1D−1
ν1

Dν2 Dν3 +3ν3(lnC)−2D−4
ν1

Dν2 D2
ν3
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− (n + 1)Dν1

)
DBn(ν1, ν2, ν3,C) = 0,((

ν1 −
1

2 lnC

)
Dn
ν1

Dν2 + nDn−1
ν1

Dν2 −

n∑
k=1

(
n
k

)
Bk+1(1)
k + 1

(lnC)−k−1Dn−k
ν1

Dk+1
ν2

+ 2ν2(lnC)−1Dn−1
ν1

D2
ν2

+ 3ν3(lnC)−2Dn−2
ν1

D3
ν2
− (n + 1)Dn+1

ν1

)
DBn(ν1, ν2, ν3,C) = 0,((

ν1 −
1

2 lnC

)
D2n
ν1

Dν3 + 2nD2n−1
ν1

Dν3 −

n∑
k=1

(
n
k

)
Bk+1(1)
k + 1

(lnC)−k−1D2n−2k
ν1

Dk+1
ν3

+ 2ν2(lnC)−1D2n−1
ν1

D2
ν3

+ 3ν3(lnC)−2D2n−4
ν1

D3
ν3
− (n + 1)D2n+2

ν1

)
DBn(ν1, ν2, ν3,C) = 0,((

ν1 −
1

2 lnC

)
Dn
ν1

Dν3 + nDn−1
ν1

Dν3 −

n∑
k=1

(
n
k

)
Bk+1(1)
k + 1

(lnC)−k−1Dn−k
ν1

Dk
ν2

Dν3 + 2ν2(lnC)−1Dn−1
ν1

D2
ν2

Dν3

+ 3ν3(lnC)−2Dn−2
ν1

D3
ν2

Dν3 − (n + 1)Dn+2
ν1

)
DBn(ν1, ν2, ν3,C) = 0,((

ν1 −
1

2 lnC

)
D2n
ν1

Dν2 + 2nD2n−1
ν1

Dν2 −

n∑
k=1

(
n
k

)
Bk+1(1)
k + 1

(lnC)−k−1D2n−k
ν1

Dν2 Dk
ν3

+ 2ν2(lnC)−1D2n−1
ν1

Dν2 Dν3 + 3ν3(lnC)−2D2n−4
ν1

Dν2 D2
ν3
− (n + 1)D2n+1

ν1

)
DBn(ν1, ν2, ν3,C) = 0.

Example 4.2. Consider
(

2
eξ+1

)
= R(ξ) in generating function (2.1), the 3V1PGHbAP DRn(ν1, ν2, ν3,C)

reduces to the 3-variable 1-parameter generalized Hermite-based Euler polynomials (3V1PGHbEP)
DEn(ν1, ν2, ν3,C) defined by the following generating function:(

2
eξ + 1

)
Cν1ξ+ν2ξ

2+ν3ξ
3

=

∞∑
n=0

DEn(ν1, ν2, ν3;C)
ξn

n!
, C > 1, |ξ| < π, (4.12)

or, equivalently (
2

eξ + 1

)
elnC(ν1ξ+ν2ξ

2+ν3ξ
3) =

∞∑
n=0

DEn(ν1, ν2, ν3;C)
ξn

n!
, C > 1, |ξ| < π. (4.13)

Further, the remaining corressponding results for the 3-variable 1-parameter generalized Hermite-
based Euler polynomials (3V1PGHbEP) DEn(ν1, ν2, ν3,C) are established by setting similar
substitutions in the following manner:

The 3-variable 1-parameter generalized Hermite-based Euler polynomials DEn(ν1, ν2, ν3;C) are
defined by the following series definition:

DEn(ν1, ν2, ν3;C) = n!
[n/3]∑
k=0

DEn−3k(ν1, ν2)νk
3

(n − 3k)! k!
(lnC)n−2k, (4.14)

where (
2

eξ + 1

)
Cν1ξ+ν2ξ

2
=

∞∑
n=0

DEn(ν1, ν2)
lnCξn

n!
.
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Next, setting δ0 = 1 and δi = 1
2 (i = 1, 2, · · · , n) in expression (2.7), the 3-variable 1-

parameter generalized Hermite-based Euler polynomials DEn(ν1, ν2, ν3;C) of degree n are defined by
the following determinant definition:

DE0(ν1, ν2, ν3;C) = 1
δ0
,

DEn(ν1, ν2, ν3;C) =
(−1)n

(δ0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 D1(ν1, ν2, ν3;C) D2(ν1, ν2, ν3;C) · · · Dn−1(ν1, ν2, ν3;C) Dn(ν1, ν2, ν3;C)

1 1
2

1
3 · · · 1

n
1

n+1

1 1
2

1
2 · · · 1

2
1
2

0 1 1
2

(
2
1

)
· · · 1

2

(
n−1

1

)
1
2

(
n
1

)
0 0 1 · · · 1

2

(
n−1

2

)
1
2

(
n
2

)
...

...
... · · ·

...
...

0 0 0 · · · 1 1
2

(
n

n−1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
(4.15)

Also, the 3-variable, 1-parameter generalized Hermite-based Euler polynomials DEn(ν1, ν2, ν3,C)
adhere to the following recurrence relation and shift operators:

DEn+1(ν1, ν2, ν3,C) = (ν1 lnC − 1
2 ) DRn(ν1, ν2, ν3,C) −

∑n
k=1

(
n
k

)
Ek DEn−k(ν1, ν2, ν3,C)

+2nν2 lnCDEn−2(ν1, ν2, ν3,C) + 3n(n − 1)ν3 lnCDEn−2(ν1, ν2, ν3,C),
(4.16)

ν1L
−
n :=

1
n(lnC)

Dν1 , (4.17)

ν2L
−
n :=

1
n(lnC)

D−1
ν1

Dν2 , (4.18)

ν3L
−
n :=

1
n(lnC)

D−2
ν1

Dν3 , (4.19)

ν1L
+
n := (ν1 lnC −

1
2

) +

n∑
k=1

(
n
k

)
Ek(lnC)−kDk

ν1
+ 2ν2Dν1 + 3ν3(lnC)−1D2

ν1
, (4.20)

ν2L
+
n := (ν1 lnC −

1
2

) +

n∑
k=1

(
n
k

)
Ek(lnC)−kD−k

ν1
Dk
ν2

+ 2ν2D−1
ν1

Dν2 + 3ν3(lnC)−1D−2
ν1

D2
ν2
, (4.21)

and

ν3L
+
n := (ν1 lnC −

1
2

) +

n∑
k=1

(
n
k

)
Ek(lnC)−kD−k

ν1
Dk
ν3

+ 2ν2D−1
ν1

Dν3 + 3ν3(lnC)−1D−4
ν1

D2
ν3
. (4.22)

Finally, the 3-variable 1-parameter generalized Hermite-based Euler polynomials DEn(ν1, ν2, ν3,C)
satisfy the following differential, integrodifferential and partial differential equations:
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ν1 −

1
2 lnC

)
Dν1 +

n∑
k=1

(
n
k

)
Ek(lnC)−k−1Dk+1

ν1
+ 2ν2(lnC)−1D2

ν1

+ 3ν3(lnC)−2D3
ν1
− (n + 1)

)
DEn(ν1, ν2, ν3,C) = 0,((

ν1 −
1

2 lnC

)
Dν2 +

n∑
k=1

(
n
k

)
Ek(lnC)−k−1D−k

ν1
Dk+1
ν2

+ 2ν2(lnC)−1D−1
ν1

D2
ν2

+ 3ν3(lnC)−2D−2
ν1

D3
ν2

− (n + 1)Dν1

)
DEn(ν1, ν2, ν3,C) = 0,((

ν1 −
1

2 lnC

)
Dν3 +

n∑
k=1

(
n
k

)
Ek(lnC)−k−1D−k

ν1
Dk+1
ν3

+ 2ν2(lnC)−1D−1
ν1

D2
ν3

+ 3ν3(lnC)−2D−4
ν1

D3
ν3

− (n + 1)D2
ν1

)
DEn(ν1, ν2, ν3,C) = 0,((

ν1 −
1

2 lnC

)
Dν3 +

n∑
k=1

(
n
k

)
Ek(lnC)−k−1D−k

ν1
Dk
ν2

Dν3 + 2ν2(lnC)−1D−1
ν1

D2
ν2

Dν3 + 3ν3(lnC)−2D−2
ν1

D3
ν2

Dν3

− (n + 1)D2
ν1

)
DEn(ν1, ν2, ν3,C) = 0,((

ν1 −
1

2 lnC

)
Dν2 +

n∑
k=1

(
n
k

)
Ek(lnC)−k−1D−k

ν1
Dν2 Dk

ν3
+ 2ν2(lnC)−1D−1

ν1
Dν2 Dν3 + 3ν3(lnC)−2D−4

ν1
Dν2 D2

ν3

− (n + 1)Dν1

)
DEn(ν1, ν2, ν3,C) = 0,((

ν1 −
1

2 lnC

)
Dn
ν1

Dν2 + nDn−1
ν1

Dν2 +

n∑
k=1

(
n
k

)
Ek(lnC)−k−1Dn−k

ν1
Dk+1
ν2

+ 2ν2(lnC)−1Dn−1
ν1

D2
ν2

+ 3ν3(lnC)−2Dn−2
ν1

D3
ν2
− (n + 1)Dn+1

ν1

)
DEn(ν1, ν2, ν3,C) = 0,((

ν1 −
1

2 lnC

)
D2n
ν1

Dν3 + 2nD2n−1
ν1

Dν3 +

n∑
k=1

(
n
k

)
Ek(lnC)−k−1D2n−2k

ν1
Dk+1
ν3

+ 2ν2(lnC)−1D2n−1
ν1

D2
ν3

+ 3ν3(lnC)−2D2n−4
ν1

D3
ν3
− (n + 1)D2n+2

ν1

)
DEn(ν1, ν2, ν3,C) = 0,((

ν1 −
1

2 lnC

)
Dn
ν1

Dν3 + nDn−1
ν1

Dν3 +

n∑
k=1

(
n
k

)
Ek(lnC)−k−1Dn−k

ν1
Dk
ν2

Dν3 + 2ν2(lnC)−1Dn−1
ν1

D2
ν2

Dν3

+ 3ν3(lnC)−2Dn−2
ν1

D3
ν2

Dν3 − (n + 1)Dn+2
ν1

)
DEn(ν1, ν2, ν3,C) = 0,((

ν1 −
1

2 lnC

)
D2n
ν1

Dν2 + 2nD2n−1
ν1

Dν2 +

n∑
k=1

(
n
k

)
Ek(lnC)−k−1D2n−k

ν1
Dν2 Dk

ν3

+ 2ν2(lnC)−1D2n−1
ν1

Dν2 Dν3 + 3ν3(lnC)−2D2n−4
ν1

Dν2 D2
ν3
− (n + 1)D2n+1

ν1

)
DEn(ν1, ν2, ν3,C) = 0.
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Similar results can be obtained for 3-variable 1-parameter generalized Hermite-based Genocchi
polynomials DGn(ν1, ν2, ν3,C).

5. Conclusions

We present a novel framework for introducing generalized 3-variable 1-parameter Hermite-based
Appell polynomials. The essential characteristics of these polynomials are explained through
generating functions, series definitions, and determinant definitions. This research uses a factorization
technique to build recurrence relations, shift operators, and several differential equations, such as
integrodifferential, partial, and differential. We focus on examining the special situations of 3-variable
1-parameter generalized Hermite-based Bernoulli, Euler, and Genocchi polynomials, providing an
understanding of their special characteristics and use.

Future research could focus on extending the current framework to include more than three
variables, exploring the associated complexities and new properties. Further examination of
additional analytical properties, such as orthogonality, asymptotic behaviour, and zeros, is also
warranted. Developing efficient computational algorithms to facilitate the practical application of
these polynomials in various fields, such as numerical analysis, physics, and engineering, will be
beneficial. Additionally, investigating their application in solving higher-order and more complex
differential equations, particularly in modeling real-world phenomena, could yield significant insights.
Interdisciplinary applications in finance, biology, and data science and enhanced graphical and
numerical analyses could provide deeper insights and lead to new theoretical advancements.
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