Research article

Efficiency conditions in multiple-objective optimal control models under generalized hypotheses

  • Received: 24 May 2024 Revised: 08 July 2024 Accepted: 26 July 2024 Published: 28 August 2024
  • MSC : 65K10, 26B25, 49K20, 90C30

  • Since not every problem in optimization theory involves convex functionals, in this study, we introduced new classes of generalized convex functionals. More precisely, under generalized hypotheses, we stated new efficiency conditions associated with a class of multiple-objective optimal control models. To this end, we first defined the $ G_{\theta} $-Fritz John problem and, by considering it, we established a link between the solutions of $ G_{\theta} $-Fritz John problem and efficient solutions of the considered model $ (P) $. In addition, we formulated the $ G_{\theta} $-necessary efficiency conditions for a feasible solution in $ (P) $. After that, we established a connection between the newly defined concept of $ G_{\theta}-KT $ points to $ (P) $ and the efficient solutions of $ (P) $. Finally, we turned our attention to the $ G_{\theta} $-sufficient efficiency conditions for a feasible solution to $ (P) $. More precisely, we established that any feasible solution to $ (P) $ will be an efficient solution if the assumption of $ G_{\theta} $-convexity (and/or $ G_{\theta} $-quasiconvexity, $ G_{\theta} $-strictly quasiconvexity, $ G_{\theta} $-monotonic quasiconvexity) is imposed on the involved functionals.

    Citation: Savin Treanţă, Cristina-Florentina Marghescu, Laura-Gabriela Matei. Efficiency conditions in multiple-objective optimal control models under generalized hypotheses[J]. AIMS Mathematics, 2024, 9(9): 25184-25204. doi: 10.3934/math.20241228

    Related Papers:

  • Since not every problem in optimization theory involves convex functionals, in this study, we introduced new classes of generalized convex functionals. More precisely, under generalized hypotheses, we stated new efficiency conditions associated with a class of multiple-objective optimal control models. To this end, we first defined the $ G_{\theta} $-Fritz John problem and, by considering it, we established a link between the solutions of $ G_{\theta} $-Fritz John problem and efficient solutions of the considered model $ (P) $. In addition, we formulated the $ G_{\theta} $-necessary efficiency conditions for a feasible solution in $ (P) $. After that, we established a connection between the newly defined concept of $ G_{\theta}-KT $ points to $ (P) $ and the efficient solutions of $ (P) $. Finally, we turned our attention to the $ G_{\theta} $-sufficient efficiency conditions for a feasible solution to $ (P) $. More precisely, we established that any feasible solution to $ (P) $ will be an efficient solution if the assumption of $ G_{\theta} $-convexity (and/or $ G_{\theta} $-quasiconvexity, $ G_{\theta} $-strictly quasiconvexity, $ G_{\theta} $-monotonic quasiconvexity) is imposed on the involved functionals.



    加载中


    [1] E. M. Almetwally, T. M. Jawa, N. Sayed-Ahmed, C. Park, M. Zakarya, S. Dey, Analysis of unit-Weibull based on progressive type-Ⅱ censored with optimal scheme, Alexandria Engineer. J., 63 (2023), 321–338. https://doi.org/10.1016/j.aej.2022.07.064 doi: 10.1016/j.aej.2022.07.064
    [2] J. V. Anchitaalagammai, T. Jayasankar, P. Selvaraj, M. Y. Sikkandar, M. Zakarya, M. Elhoseny, et al., Energy efficient cluster-based optimal resource management in IoT environment, Comput. Mater. Contin., 70 (2022), 1247–1261. https://doi.org/10.32604/cmc.2022.017910 doi: 10.32604/cmc.2022.017910
    [3] T. Antczak, New optimality conditions and duality results of $G$-type in differentiable mathematical programming, Nonlinear Anal., 66 (2007), 1617–1632. https://doi.org/10.1016/j.na.2006.02.013 doi: 10.1016/j.na.2006.02.013
    [4] T. Antczak, On $G$-invex multiobjective programming. Part Ⅰ. Optimality, J. Global Optim., 43 (2009), 97–109. https://doi.org/10.1007/s10898-008-9299-5 doi: 10.1007/s10898-008-9299-5
    [5] M. Arana-Jiménez, R. Osuna-Gómez, A. Rufián-Lizana, G. Ruiz-Garzón, KT-invex control problem, Appl. Math. Comput., 197 (2008), 489–496. https://doi.org/10.1016/j.amc.2007.07.064 doi: 10.1016/j.amc.2007.07.064
    [6] M. Arana-Jiménez, G. Ruiz-Garzón, A. Rufián-Lizana, R. Osuna-Gómez, A necessary and sufficient condition for duality in multiobjective variational problems, Eur. J. Oper. Res., 201 (2010), 672–681. https://doi.org/10.1016/j.ejor.2009.03.047 doi: 10.1016/j.ejor.2009.03.047
    [7] A. Baranwal, A. Jayaswal, Preeti, Robust duality for the uncertain multitime control optimization problems, Int. J. Robust Nonlinear Control, 32 (2022), 5837–5847. https://doi.org/10.1002/rnc.6113 doi: 10.1002/rnc.6113
    [8] C. R. Bector, I. Husain, Duality for multiobjective variational problems, J. Math. Anal. Appl., 166 (1992), 214–229. https://doi.org/10.1016/0022-247X(92)90337-D doi: 10.1016/0022-247X(92)90337-D
    [9] D. Bhatia, P. Kumar, Multiobjective control problem with generalized invexity, J. Math. Anal. Appl., 189 (1995), 676–692. https://doi.org/10.1006/jmaa.1995.1045 doi: 10.1006/jmaa.1995.1045
    [10] S. Bhushan, A. Kumar, E. Hussam, M. S. Mustafa, M. Zakarya, W. R. Alharbi, On stratified ranked set sampling for the quest of an optimal class of estimators, Alexandria Engineer. J., 86 (2024), 79–97. https://doi.org/10.1016/j.aej.2023.11.037 doi: 10.1016/j.aej.2023.11.037
    [11] T. R. Gulati, G. Mehndiratta, Optimality and duality for second-order multiobjective variational problems, Eur. J. Pure Appl. Math., 3 (2010), 786–805. Available from: https://www.ejpam.com/index.php/ejpam/article/view/534
    [12] Y. Guo, T. Li, Modeling the competitive transmission of the Omicron strain and Delta strain of COVID-19, J. Math. Anal. Appl., 526 (2023), 127283. https://doi.org/10.1016/j.jmaa.2023.127283 doi: 10.1016/j.jmaa.2023.127283
    [13] Y. Guo, T. Li, Fractional-order modeling and optimal control of a new online game addiction model based on real data, Commun. Nonlinear Sci. Numer. Simul., 121 (2023), 107221. https://doi.org/10.1016/j.cnsns.2023.107221 doi: 10.1016/j.cnsns.2023.107221
    [14] R. Gupta, M. Srivastava, Optimality and duality for nonsmooth multiobjective programming using $G$-type Ⅰ functions, Appl. Math. Comput., 240 (2014), 294–307. https://doi.org/10.1016/j.amc.2014.04.066 doi: 10.1016/j.amc.2014.04.066
    [15] D. H. Jacobson, M. M. Lele, J. L. Speyer, New necessary conditions of optimality for control problems with state-variable inequality constraints, J. Math. Anal. Appl., 35 (1971), 255–284. https://doi.org/10.1016/0022-247X(71)90219-8 doi: 10.1016/0022-247X(71)90219-8
    [16] A. Jayswal, Preeti, S. Treanţă, Multi-dimensional control problems: Robust approach, Springer Singapore, 2022. https://doi.org/10.1007/978-981-19-6561-6
    [17] T. Li, Y. Guo, Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination, Chaos Soliton Fract., 156 (2022), 111825. https://doi.org/10.1016/j.chaos.2022.111825 doi: 10.1016/j.chaos.2022.111825
    [18] N. T. H. Linh, J. P. Penot, Optimality conditions for quasiconvex programs, SIAM J. Optim., 17 (2006), 500–510. https://doi.org/10.1137/040621843 doi: 10.1137/040621843
    [19] K. Malanowski, Sufficient optimality conditions for optimal control subject to state constraints, SIAM J. Control Optim., 35 (1997), 205–227. https://doi.org/10.1137/S0363012994267637 doi: 10.1137/S0363012994267637
    [20] S. Mititelu, Optimality and duality for invex multi-time control problems with mixed constraints, J. Adv. Math. Stud., 2 (2009), 25–35.
    [21] S. Mititelu, S. Treanţă, Efficiency conditions in vector control problems governed by multiple integrals, J. Appl. Math. Comput., 57 (2018), 647–665. https://doi.org/10.1007/s12190-017-1126-z doi: 10.1007/s12190-017-1126-z
    [22] V. A. de Oliveira, G. N. Silva, M. A. Rojas-Medar, KT-invexity in optimal control problems, Nonlinear Anal., 71 (2009), 4790–4797. https://doi.org/10.1016/j.na.2009.03.055 doi: 10.1016/j.na.2009.03.055
    [23] A. Prusińska, A. Tret'yakov, Necessary $p$-th order optimality conditions for irregular Lagrange problem in calculus of variations, Math. Commun., 19 (2014), 561–572. Available from: https://hrcak.srce.hr/130116
    [24] J. Soolaki, O. S. Fard, A. H. Borzabadi, Generalized Euler-Lagrange equations for fuzzy fractional variational calculus, Math. Commun., 21 (2016), 199–218. Available from: https://hrcak.srce.hr/170384
    [25] S. Treanţă, M. Arana-Jiménez, KT-pseudoinvex multidimensional control problem, Optim. Control Appl. Meth., 39 (2018), 1291–1300. https://doi.org/10.1002/oca.2410 doi: 10.1002/oca.2410
    [26] S. Treanţă, A necessary and sufficient condition of optimality for a class of multidimensional control problems, Optim. Control Appl. Methods, 41 (2020), 2137–2148. https://doi.org/10.1002/oca.2645 doi: 10.1002/oca.2645
    [27] S. Treanţă, K. Das, On robust saddle-point criterion in optimization problems with curvilinear integral functionals, Mathematics, 9 (2021), 1790. https://doi.org/10.3390/math9151790 doi: 10.3390/math9151790
    [28] S. Treanţă, Robust saddle-point criterion in second-order partial differential equation and partial differential inequation constrained control problems, Int. J. Robust Nonlinear Control, 31 (2021), 9282–9293. https://doi.org/10.1002/rnc.5767 doi: 10.1002/rnc.5767
    [29] S. Treanţă, Robust optimality in constrained optimization problems with application in mechanics, J. Math. Anal. Appl., 515 (2022), 126440. https://doi.org/10.1016/j.jmaa.2022.126440 doi: 10.1016/j.jmaa.2022.126440
    [30] S. A. Urziceanu, Necessary optimality conditions in isoperimetric constrained optimal control problems, Symmetry, 11 (2019), 1380. https://doi.org/10.3390/sym11111380 doi: 10.3390/sym11111380
    [31] G. Yu, Y. Lu, Multi-objective optimization problems and vector variational-like inequalities involving semi-strong E-convexity, Fourth Int. Joint Conf. Comput. Sci. Optimiz., 476–479, 2011. https://doi.org/10.1109/CSO.2011.170 doi: 10.1109/CSO.2011.170
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(400) PDF downloads(45) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog