
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(9): 25184–25204.
DOI: 10.3934/math.20241228
Received: 24 May 2024
Revised: 08 July 2024
Accepted: 26 July 2024
Published: 28 August 2024

Research article

Efficiency conditions in multiple-objective optimal control models under
generalized hypotheses
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Abstract: Since not every problem in optimization theory involves convex functionals, in this study,
we introduced new classes of generalized convex functionals. More precisely, under generalized
hypotheses, we stated new efficiency conditions associated with a class of multiple-objective optimal
control models. To this end, we first defined the Gθ-Fritz John problem and, by considering it,
we established a link between the solutions of Gθ-Fritz John problem and efficient solutions of
the considered model (P). In addition, we formulated the Gθ-necessary efficiency conditions for a
feasible solution in (P). After that, we established a connection between the newly defined concept
of Gθ − KT points to (P) and the efficient solutions of (P). Finally, we turned our attention to
the Gθ-sufficient efficiency conditions for a feasible solution to (P). More precisely, we established
that any feasible solution to (P) will be an efficient solution if the assumption of Gθ-convexity
(and/or Gθ-quasiconvexity, Gθ-strictly quasiconvexity, Gθ-monotonic quasiconvexity) is imposed on
the involved functionals.
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1. Introduction

The importance of convexity in optimization theory has been well established over time. However,
as we all know, the concept of convexity is no longer adequate for many mathematical models in
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engineering, economics, decision sciences, and mechanics. Thus, in this paper, we will consider
a multiple-objective optimal control model determined by not necessary convex functionals. The
crucial role of multi-objective optimization problems is well-known. Multi-objective programming
problems are used to solve a wide range of real-world issues, such as those in engineering, finance, and
production planning. These types of problems have become the focus of increasing amounts of research
over the years in a variety of mathematical fields, including optimal control theory, game theory,
statistics, and finance. Important duality theorems and necessary and sufficient optimality criteria
for multi-objective variational problems have been thoroughly studied by a large number of scholars
(see, for instance, Bector and Husain [8], Bhatia and Kumar [9], and Gulati and Mehndiratta [11],
Arana-Jiménez et al. [6], Yu and Lu [31]). Moreover, necessary and sufficient efficiency criteria
for multi-objective fractional control models involving multiple integrals were established by Mititelu
and Treanţă [21].

Over time, many researchers have focused on optimization issues including uncertainty, because
the empirical mechanisms are highly complex and often entail uncertainty in the original data.
Robustness in optimization problems generated by curvilinear integrals with applications in mechanics
was examined by Treanţă and Das [27]. Also, Treanţă [28] discussed robust saddle-point criterion
in second-order partial differential equations and partial differential equation constrained-control
problems. For a given multi-time control problem with data uncertainty, Baranwal et al. [7]
constructed two significant dual models in the literature (namely, Mond-Weir and Wolfe-type
duals), and established the corresponding robust duality theorems. The necessary and sufficient
optimality hypotheses for a variational control problem embracing data uncertainty were recently stated
in Treanţă [29].

Controlled optimization problems are fundamental in many fields of operations research, such
as control of space structures, light control design, or production control. Several academics
have contributed to formulating and investigating the optimality conditions for some classes of
controlled optimization models with equality, inequality, or isoperimetric constraints, inspired by the
practical viewpoints of the controlled optimization problem (see, for example, Jacobson et al. [15],
Urziceanu [30], Jayswal et al. [16], Malanowski [19]). Treanţă [26], under the premise of KT-invexity,
established that every Kuhn-Tucker point must be an optimal solution to the considered control model
(see de Oliveira et al. [22], Arana-Jiménez et al. [5]). This technique sparked numerous efforts to
investigate optimality criteria in the context of optimization problems. For more information in this
direction, the reader can consult Mititelu [20], Prusinska and Tretyakov [23], Soolaki et al. [24],
Bhushan et al. [10], Almetwally et al. [1], Anchitaalagammai et al. [2], Li and Guo [12, 13, 17], and
references therein.

Since not every problem in optimization theory involves convex functionals, in this study,
we introduce new classes of generalized convex functionals. More precisely, in accordance to
Antczak [3, 4], Linh and Penot [18], and Gupta and Srivastava [14], we formulate the concepts of Gθ-
convexity, Gθ-quasiconvexity, Gθ-strictly quasiconvexity, and Gθ-monotonic quasiconvexity associated
with multiple integral type functionals. By considering these new theoretical elements, we study
through various techniques (by using the newly defined concepts of Gθ-Fritz John problem and Gθ−KT
points) the efficiency criteria for a multi-dimensional first-order PDE-constrained optimal control
problem. In addition to the novelty elements mentioned above, the authors formulate an illustrative
example of a real-valued double integral functional that is Gθ-convex but not convex at a given point.
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As a consequence, it is evident that every convex functional is Gθ-convex, and in this case, Gθ is taken
to be the identity map.

The structure of the article is as follows. Section 2 introduces notations, definitions, problem
formulation, and preliminary results. Section 3 contains the Gθ-Fritz John problem and, by considering
it, we establish a link between the solutions of Gθ-Fritz John problem and efficient solutions of the
considered model (P). In addition, we formulate the Gθ-necessary efficiency conditions for a feasible
solution in (P). After that, in Section 4, we establish a connection between the newly defined concept
of Gθ−KT points to (P) and the efficient solutions of (P). Finally, in Section 5, we turn our attention to
the Gθ-sufficient efficiency conditions for a feasible solution to (P). More precisely, we establish that
any feasible solution to (P) will be an efficient solution if the assumption of Gθ-convexity (and/or Gθ-
quasiconvexity, Gθ-strictly quasiconvexity, Gθ-monotonic quasiconvexity) is imposed on the involved
functionals. Finally, we wrap up the paper in Section 6.

2. Problem formulation and preliminary results

This section consists of some basic notations and notions that will be helpful in the formulation
of the problem and set up the main results:

• Consider the three finite dimensional Euclidean spaces Rm, Rn, and Rk; also, let x = (xα) , α =

1,m, g =
(
gi
)
, i = 1, n, and f = ( f j), j = 1, k are the local coordinates of Rm, Rn, and

Rk, respectively.
• Let K = Kx0,x1 ⊂ Rm be a compact subset [for instance, a hyperparallelepiped fixed by the

diagonally opposite points x0 =
(
xα0

)
and x1 =

(
xα1

)
] in Rm; also, let dx = dx1dx2 · · · dxm be the

volume element in Rm ⊃ K .
• Let G be the space of piecewise smooth state functions g : K 7→ Rn endowed with norm

‖g‖ = ‖g‖∞ +

m∑
α=1

‖gα‖∞ ,

where ‖g‖∞ = max
(∣∣∣g1

∣∣∣ , ∣∣∣g2
∣∣∣ , . . . , |gn|

)
and gα =

∂g
∂xα ; also, let F be the space of continuous control

functions f : K 7→ Rk, equipped with the uniform norm.
• For any two points a =

(
a`

)
and b =

(
b`

)
in Rl, the following convention will be used in this

paper:

a = b⇔ a` = b`, a ≤ b⇔ a` ≤ b`, a < b⇔ a` < b`,

a � b⇔ a ≤ b, a , b, ` = 1, l.

Definition 2.1. A function h : R 7→ R is said to be a strictly increasing function if the following
implication is satisfied:

u < e⇒ h(u) < h(e), ∀u, e ∈ R.

Considering the above-mentioned mathematical elements, we formulate the following multi-
dimensional first-order PDE-constrained control model:

(P) min
(g, f )

{ ∫
K

θ(x, g(x), f (x))dx
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=

(∫
K

θ1(x, g(x), f (x))dx, · · · ,
∫
K

θw(x, g(x), f (x))dx
) }
, (1)

subject to
∂gi

∂xα
(x) = Ui

α(x, g(x), f (x)), α = 1,m, i = 1, n, (2)

Wβ(x, g(x), f (x)) ≤ 0, β ∈ Q = 1, q, (3)

g (x0) = g0, g (x1) = g1, (4)

where x ∈ K , θ = (θκ) : K × G × F 7→ Rw, κ = 1,w, Wβ : K × G × F 7→ R, β ∈ Q =

1, q, Uα =
(
Ui

α

)
: K × G × F 7→ Rn, α = 1,m, are continuously differentiable functionals. Also,

we assume the constraints Uα satisfy the complete integrability conditions (closeness conditions)
DνUα = DαUν, α, ν = 1,m, α , ν, where Dν is the total derivative.

LetD = {(g, f ) ∈ G×F | (g, f ) satisfying the conditions (2)–(4)} be the set of all feasible solutions
to (P). Also, let Q(ḡ, f̄ ) denote the set of indices of active constraints at (ḡ, f̄ ), that is,

Q(ḡ, f̄ ) =
{
β ∈ Q :Wβ(x, ḡ(x), f̄ (x)) = 0

}
.

Definition 2.2. A point (ḡ, f̄ ) ∈ D is said to be an efficient solution to the multidimensional first-order
PDE-constrained control problem (P) if, for all (g, f ) ∈ D, we have∫

K

θ(x, ḡ(x), f̄ (x))dx �
∫
K

θ(x, g(x), f (x))dx.

Definition 2.3. A point (ḡ, f̄ ) ∈ G × F is said to be a stationary point of the vector functional θ if

∂θ

∂g(x)
(x, ḡ(x), f̄ (x))(g(x) − ḡ(x)) +

∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))( f (x) − f̄ (x)) = 0,

for all (g, f ) ∈ G × F .

Definition 2.4. Let G×F be a convex set and let θ : K ×G×F 7→ Rw be a continuously differentiable

functional. Then, the vector-valued multiple integral functional Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is said

to be convex at (ḡ, f̄ ) ∈ G × F if the following inequality∫
K

θ(x, g(x), f (x))dx −
∫
K

θ(x, ḡ(x), f̄ (x))dx

≥

∫
K

[
∂θ

∂g(x)
(x, ḡ(x), f̄ (x))(g(x) − ḡ(x)) +

∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))( f (x) − f̄ (x))

]
dx,

is satisfied for all (g, f ) ∈ G × F . If the above inequality is satisfied for all (ḡ, f̄ ) ∈ G × F , then the

functional Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is said to be convex on G × F .

Definition 2.5. Let G×F be a convex set and let θ : K ×G×F 7→ Rw be a continuously differentiable

functional. Then, the vector-valued multiple integral functional Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is said

to be quasiconvex at (ḡ, f̄ ) ∈ G × F if the following inequality∫
K

θ(x, g(x), f (x))dx ≤
∫
K

θ(x, ḡ(x), f̄ (x))dx,
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implies ∫
K

[
∂θ

∂g(x)
(x, ḡ(x), f̄ (x))(g(x) − ḡ(x)) +

∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))( f (x) − f̄ (x))

]
dx ≤ 0,

for all (g, f ) ∈ G × F . If the above implication is satisfied for all (ḡ, f̄ ) ∈ G × F , then the functional

Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is said to be quasiconvex on G × F .

Definition 2.6. Let G×F be a convex set and let θ : K ×G×F 7→ Rw be a continuously differentiable

functional. Then, the vector-valued multiple integral functional Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is said

to be strictly quasiconvex at (ḡ, f̄ ) ∈ G × F if the following inequality∫
K

θ(x, g(x), f (x))dx ≤
∫
K

θ(x, ḡ(x), f̄ (x))dx,

implies ∫
K

[
∂θ

∂g(x)
(x, ḡ(x), f̄ (x))(g(x) − ḡ(x)) +

∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))( f (x) − f̄ (x))

]
dx < 0,

for all (g, f ) ∈ G × F . If the above implication is satisfied for all (ḡ, f̄ ) ∈ G × F , then the functional

Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is said to be strictly quasiconvex on G × F .

Definition 2.7. Let G×F be a convex set and let θ : K ×G×F 7→ Rw be a continuously differentiable

functional. Then, the vector-valued multiple integral functional Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is said

to be monotonic quasiconvex at (ḡ, f̄ ) ∈ G × F if the following equality∫
K

θ(x, g(x), f (x))dx =

∫
K

θ(x, ḡ(x), f̄ (x))dx,

implies ∫
K

[
∂θ

∂g(x)
(x, ḡ(x), f̄ (x))(g(x) − ḡ(x)) +

∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))( f (x) − f̄ (x))

]
dx = 0,

for all (g, f ) ∈ G × F . If the above implication is satisfied for all (ḡ, f̄ ) ∈ G × F , then the functional

Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is said to be monotonic quasiconvex on G × F .

Now, on the lines of Antczak [3, 4], Linh and Penot [18], and Gupta and Srivastava [14],
we introduce the concept of Gθ-convexity for a vector-valued multiple integral functional. In a
similar way, we can introduce the concepts of Gθ-quasiconvexity, Gθ-strictly quasiconvexity, or Gθ-
monotonic quasiconvexity.

Definition 2.8. LetG×F be a convex set, θ : K×G×F 7→ Rw a continuously differentiable functional,
and Gθ : Iθ 7→ Rw a strictly increasing vector-valued differentiable function, where Iθ ⊂ Rw denote the
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range of θ. Then, the vector-valued multiple integral functional Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is said

to be Gθ-convex at (ḡ, f̄ ) ∈ G × F if the following inequality∫
K

Gθ(θ(x, g(x), f (x)))dx −
∫
K

Gθ(θ(x, ḡ(x), f̄ (x)))dx (5)

≥

∫
K

[
G′θ(θ(x, g(x), f (x)))

(
∂θ

∂g(x)
(x, ḡ(x), f̄ (x))(g(x) − ḡ(x))

+
∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))( f (x) − f̄ (x))

)]
dx, ∀(g, f ) ∈ G × F ,

is satisfied, with Gθ = (Gκ
θ), G′θ =

∂Gκ
θ

∂θκ
, θ = (θκ), κ = 1,w. If inequality (5) is satisfied for any

(ḡ, f̄ ) ∈ G × F , then the vector-valued multiple integral functional Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is

said to be Gθ-convex on G × F .

In the example given below, we consider a real-valued double integral functional and we show
that it is Gθ-convex but not convex at a given point. As a consequence, it is evident that every convex
functional is Gθ-convex, and in this case, Gθ is taken to be the identity map.

Example 2.1. Let w = 1, G = {g : Kx0,x1 → [−2, 2] ⊂ R}, F = { f : Kx0,x1 → [−1, 1] ⊂ R},
where Kx0,x1 is a square fixed with the diagonally opposite points x0 =

(
x1

0, x
2
0

)
= (−2,−2) and x1 =(

x1
1, x

2
1

)
= (2, 2) in R2. Now, we consider the real-valued functional θ : Kx0,x1 ×G×F 7→ R, defined by

θ(x, g(x), f (x)) = ln[g(x) + f (x) + 5], that generates the real-valued double integral functional

Θ : G × F → R,

Θ(g, f ) =

∫
Kx0 ,x1

θ(x, g(x), f (x))dx1dx2 =

∫
Kx0 ,x1

ln[g(x) + f (x) + 5]dx1dx2. (6)

Also, let us define

ḡ(x) =
x1 + x2

2
, f̄ (x) =

2x1 + x2

6
, x = (x1, x2) ∈ Kx0,x1 ,

and consider x1 = x2 = 1. We have∫
Kx0 ,x1

θ(x, g(x), f (x))dx1dx2 −

∫
Kx0 ,x1

θ(x, ḡ(x), f̄ (x))dx1dx2

−

∫
Kx0 ,x1

[ ∂θ

∂g(x)
(x, ḡ(x), f̄ (x))(g(x) − ḡ(x))

+
∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))( f (x) − f̄ (x))

]
dx1dx2

=

∫
Kx0 ,x1

(
ln[g(x) + f (x) + 5] − ln

13
2
−

2
13

[
g(x) + f (x) −

3
2

])
dx1dx2

� 0, ∀(g, f ) ∈ G × F (see Figure1(a)).
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Thus, the above-mentioned real-valued double integral functional is not convex at
(
1, 1

2

)
∈ G×F .

On the other hand, if we consider the strictly increasing function Gθ : Iθ 7→ R defined by
Gθ(θ(x, g(x), f (x))) = e2θ(x,g(x), f (x)), then we obtain∫

Kx0 ,x1

Gθ(θ(x, g(x), f (x)))dx1dx2 −

∫
Kx0 ,x1

Gθ

(
θ(x, ḡ(x), f̄ (x))dx1dx2

−

∫
Kx0 ,x1

[
G′θ(θ(x, g(x), f (x)))

(
∂θ

∂g(x)
(x, ḡ(x), f̄ (x))(g(x) − ḡ(x))

+
∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))( f (x) − f̄ (x))

)]
dx1dx2

=

∫
Kx0 ,x1

(g(x) + f (x) + 5)2
−

(
13
2

)2

− 13
[
g(x) + f (x) −

3
2

] dx1dx2

≥ 0, ∀(g, f ) ∈ G × F (see Figure 1(b)).

(a) (b)
Figure 1. Convexity and Gθ-convexity associated with Θ(g, f ).

Thus, the real-valued double integral functional given in (6) is Gθ-convex at
(
1, 1

2

)
∈ G×F . Hence,

we have shown that the real-valued double integral functional Θ(g, f ) =

∫
Kx0 ,x1

θ(x, g(x), f (x))dx1dx2

is Gθ-convex at
(
1, 1

2

)
∈ G × F , but not convex at

(
1, 1

2

)
∈ G × F .

Definition 2.9. LetG×F be a convex set, θ : K×G×F 7→ Rw a continuously differentiable functional,
and Gθ : Iθ 7→ Rw a strictly increasing vector-valued differentiable function, where Iθ ⊂ Rw denote the

range of θ. Then, the vector-valued multiple integral functional Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is said

to be Gθ-quasiconvex at (ḡ, f̄ ) ∈ G × F if the following inequality∫
K

Gθ(θ(x, g(x), f (x)))dx ≤
∫
K

Gθ(θ(x, ḡ(x), f̄ (x)))dx,

implies ∫
K

[
G′θ(θ(x, g(x), f (x)))

(
∂θ

∂g(x)
(x, ḡ(x), f̄ (x))(g(x) − ḡ(x))
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+
∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))( f (x) − f̄ (x))

)]
dx ≤ 0, ∀(g, f ) ∈ G × F ,

with Gθ = (Gκ
θ), G′θ =

∂Gκ
θ

∂θκ
, θ = (θκ), κ = 1,w. If the above inequality is satisfied for any (ḡ, f̄ ) ∈ G×F ,

then the vector-valued multiple integral functional Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is said to be Gθ-

quasiconvex on G × F .

Definition 2.10. LetG×F be a convex set, θ : K×G×F 7→ Rw a continuously differentiable functional,
and Gθ : Iθ 7→ Rw a strictly increasing vector-valued differentiable function, where Iθ ⊂ Rw denote the

range of θ. Then, the vector-valued multiple integral functional Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is said

to be Gθ-strictly quasiconvex at (ḡ, f̄ ) ∈ G × F if the following inequality∫
K

Gθ(θ(x, g(x), f (x)))dx ≤
∫
K

Gθ(θ(x, ḡ(x), f̄ (x)))dx,

implies ∫
K

[
G′θ(θ(x, g(x), f (x)))

(
∂θ

∂g(x)
(x, ḡ(x), f̄ (x))(g(x) − ḡ(x))

+
∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))( f (x) − f̄ (x))

)]
dx < 0, ∀(g, f ) ∈ G × F ,

with Gθ = (Gκ
θ), G′θ =

∂Gκ
θ

∂θκ
, θ = (θκ), κ = 1,w. If the above inequality is satisfied for any (ḡ, f̄ ) ∈ G×F ,

then the vector-valued multiple integral functional Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is said to be Gθ-

strictly quasiconvex on G × F .

Definition 2.11. LetG×F be a convex set, θ : K×G×F 7→ Rw a continuously differentiable functional,
and Gθ : Iθ 7→ Rw a strictly increasing vector-valued differentiable function, where Iθ ⊂ Rw denote the

range of θ. Then, the vector-valued multiple integral functional Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is said

to be Gθ-monotonic quasiconvex at (ḡ, f̄ ) ∈ G × F if the following inequality∫
K

Gθ(θ(x, g(x), f (x)))dx =

∫
K

Gθ(θ(x, ḡ(x), f̄ (x)))dx,

implies ∫
K

[
G′θ(θ(x, g(x), f (x)))

(
∂θ

∂g(x)
(x, ḡ(x), f̄ (x))(g(x) − ḡ(x))

+
∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))( f (x) − f̄ (x))

)]
dx = 0, ∀(g, f ) ∈ G × F ,

with Gθ = (Gκ
θ), G′θ =

∂Gκ
θ

∂θκ
, θ = (θκ), κ = 1,w. If the above inequality is satisfied for any (ḡ, f̄ ) ∈ G×F ,

then the vector-valued multiple integral functional Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx is said to be Gθ-

monotonic quasiconvex on G × F .
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In the next theorem, we establish a connection between stationary points and minimum points
associated with a Gθ-convex vector-valued multiple integral functional.

Theorem 2.1. If the vector-valued multiple integral type functional

Θ(g, f ) =

∫
K

θ(x, g(x), f (x))dx,

is Gθ-convex on G × F , then every stationary point of θ is global minimum in G × F for Θ.

Proof. Let (ḡ, f̄ ) ∈ G × F be a stationary point of the vector functional θ. Then, we have∫
K

[
G′θ(θ(x, g(x), f (x)))

( ∂θ

∂g(x)
(x, ḡ(x), f̄ (x))(g(x) − ḡ(x)) (7)

+
∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))( f (x) − f̄ (x))

)]
dx = 0, ∀(g, f ) ∈ G × F .

From the assumption that the vector-valued multiple integral type functional Θ(g, f ) =∫
K

θ(x, g(x), f (x))dx is Gθ-convex on G × F , we have

∫
K

Gθ(θ(x, g(x), f (x)))dx −
∫
K

Gθ(θ(x, ḡ(x), f̄ (x)))dx

≥

∫
K

[
G′θ(θ(x, g(x), f (x)))

(
∂θ

∂g(x)
(x, ḡ(x), f̄ (x))(g(x) − ḡ(x))

+
∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))( f (x) − f̄ (x))

)]
dx, ∀(g, f ) ∈ G × F .

By using the Eq (7), we get∫
K

Gθ(θ(x, g(x), f (x)))dx ≥
∫
K

Gθ(θ(x, ḡ(x), f̄ (x)))dx, ∀(g, f ) ∈ G × F .

Since Gθ is an increasing function, we obtain∫
K

θ(x, g(x), f (x))dx ≥
∫
K

θ(x, ḡ(x), f̄ (x))dx, ∀(g, f ) ∈ G × F ,

which concludes that (ḡ, f̄ ) is a global minimum of the functional
∫
K

θ(x, g(x), f (x))dx. This completes

the proof. �

3. Efficiency in (P) via Gθ-Fritz John problem

In this section, we first define the Gθ-Fritz John problem and, by considering it, we establish a
link between the solutions of Gθ-Fritz John problem and the efficient solutions of (P). In addition, we
formulate the Gθ-necessary efficiency conditions for a feasible solution in (P).
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Gθ-Fritz John problem. If it exists, find the point (ḡ(x), f̄ (x), σ, λ(x), µ(x)) ∈ D × Rw
+ × R

nm × Rq
+

such that (with summation over repeated indices):

σκG′θ(θ(x, ḡ(x), f̄ (x)))
∂θ

∂gi(x)
(x, ḡ(x), f̄ (x))

+λαi (x)G′
Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂gi(x)
(x, ḡ(x), f̄ (x))

+µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) ∂Wβ

∂gi(x)
(x, ḡ(x), f̄ (x)) +

∂λαi
∂xα

= 0, i = 1, n, (8)

σκG′θ(θ(x, ḡ(x), f̄ (x)))
∂θ

∂ f j(x)
(x, ḡ(x), f̄ (x))

+λαi (x)G′
Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂ f j(x)
(x, ḡ(x), f̄ (x))

+µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) ∂Wβ

∂ f j(x)
(x, ḡ(x), f̄ (x)) = 0, j = 1, k, (9)

µβ(x)
[
GWβ

(
Wβ(x, g(x), f (x))

)
−GWβ

(
Wβ(x, ḡ(x), f̄ (x))

)]
≤ 0, (10)

β ∈ Q, (g, f ) ∈ D, (G-complementary slackness condition),

σ ≥ 0, µ(x) ≥ 0, (σ, µ(x)) , (0, 0), (11)

are satisfied, for all x ∈ K , except at discontinuity points, where Gθ,GUi
α
, and GWβ

are differentiable
increasing functions defined on Iθ (the image set of θ(x, g(x), f (x)) ), IUi

α
(the image set of

Ui
α(x, g(x), f (x))

)
, and IWβ

(the image set of Wβ(x, g(x), f (x))
)
, respectively.

Definition 3.1. We say the point (ḡ(x), f̄ (x), σ, λ(x), µ(x)) ∈ D × Rw
+ × R

nm × Rq
+ is a solution of the

Gθ-Fritz John problem if it satisfies the conditions (8) to (11).

Lemma 3.1. Let (ḡ, f̄ ) ∈ D and µ(x) ∈ Rq
+ satisfy the classical slackness condition

µβ(x)Wβ(x, ḡ(x), f̄ (x)) = 0. Then, (ḡ, f̄ ) ∈ D and µ(x) ∈ Rq
+ also fulfil the G-complementary slackness

condition, for all (g, f ) ∈ D, β ∈ Q.

Proof. If β < Q(ḡ, f̄ ), then from classical slackness condition it follows that µβ(x) = 0 . Thus, the G-
complementary slackness condition holds. If µβ(x) > 0, then again from classical slackness condition,
we haveWβ(x, ḡ(x), f̄ (x)) = 0, and therefore

Wβ(x, g(x), f (x)) ≤ Wβ(x, ḡ(x), f̄ (x)) = 0, ∀(g, f ) ∈ D.

Since GWβ
with β ∈ Q is an increasing function on IWβ

, from the above inequality we get

GWβ

(
Wβ(x, g(x), f (x))

)
≤ GWβ

(
Wβ(x, ḡ(x), f̄ (x))

)
, ∀(g, f ) ∈ D.

Further, since µβ(x) ≥ 0, β ∈ Q, we have

µβ(x)GWβ

(
Wβ(x, g(x), f (x))

)
≤ µβ(x)GWβ

(
Wβ(x, ḡ(x), f̄ (x))

)
, ∀(g, f ) ∈ D,
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or, equivalently,

µβ(x)
[
GWβ

(
Wβ(x, g(x), f (x))

)
−GWβ

(
Wβ(x, ḡ(x), f̄ (x))

)]
≤ 0, ∀(g, f ) ∈ D,

and this completes the proof. �

In the next theorem, we establish a connection between solutions of the Gθ-Fritz John problem
and the efficient solutions of (P).

Theorem 3.1. If (ḡ, f̄ ) ∈ D is an efficient solution to (P), then there exists σ ∈ Rw
+ and piecewise

smooth functions λ(x) ∈ Rnm, µ(x) ∈ Rq
+ such that the point

(ḡ(x), f̄ (x), σ, λ(x), µ(x)),

is a solution to the Gθ-Fritz John problem.

Proof. The proof given below follows the same line as in Treanţă [29]. Let (g, f ) ∈ D and the vector
differentiable functions p(x) ∈ Rn and q(x) ∈ Rk, such that p|∂K = q|∂K = 0 (where ∂K denotes the
boundary ofK ). For ε1 > 0, ε2 > 0 and for the efficient solution (ḡ, f̄ ), we consider the ε-neighborhood
defined by

Vε =
{
(g, f ) | g = ḡ + ε1 p, f = f̄ + ε2q

}
.

Now, from the assumption that (ḡ, f̄ ) is an efficient solution to (P), we obtain that (ε1, ε2) = (0, 0) is a
minimizer to the following problem:

(P1) min s (ε1, ε2) =

∫
K

Gθ

(
θ
(
x, ḡ + ε1 p, f̄ + ε2q

))
dx,

subject to

ui
α (ε1, ε2) =

∫
K

[
GUi

α

(
Ui

α

(
x, ḡ + ε1 p, f̄ + ε2q

))
−
∂ḡi

∂xα
− ε1

∂p
∂xα

]
dx = 0,

hβ (ε1, ε2) =

∫
K

GWβ

(
Wβ

(
x, ḡ + ε1 p, f̄ + ε2q

))
dx ≤ 0,

x ∈ K , p|∂K = 0, q|∂K = 0.

Since (0, 0) is a minimizer of (MCP1), then there are the Lagrange multipliers σκ, λαi (ḡ, f̄ ) and µβ(ḡ, f̄ )
such that the following Fritz John conditions hold at (0, 0):

σκ∇s(0, 0) + λαi (ḡ, f̄ )∇ui
α(0, 0) + µβ(ḡ, f̄ )∇hβ(0, 0) = 0, (12)

µβ(ḡ, f̄ )hβ(0, 0) = 0, (13)

σ ≥ 0, µβ(ḡ, f̄ ) ≥ 0, (14)

where

∇s (ε1, ε2) =

(
∂s
∂ε1

,
∂s
∂ε2

)
=

(∫
K

G′θ
∂θ

∂gi pdx,
∫
K

G′θ
∂θ

∂ f j qdx
)
,

∇ui
α (ε1, ε2) =

(
∂ui

α

∂ε1
,
∂ui

α

∂ε2

)
=

(∫
K

(
G′
Ui
α

∂Ui
α

∂gi p −
∂p
∂xα

)
dx,

∫
K

G′
Ui
α

∂Ui
α

∂ f j qdx
)
,
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∇hβ (ε1, ε2) =

(
∂hβ
∂ε1

,
∂hβ
∂ε2

)
=

(∫
K

G′
Wβ

∂Wβ

∂gi pdx,
∫
K

G′
Wβ

∂Wβ

∂ f j qdx
)
.

Then, the relation (12) can be written as follows

σκ

∫
K

G′θ
∂θ

∂gi pdx + λαi (ḡ, f̄ )
∫
K

(
G′
Ui
α

∂Ui
α

∂gi p −
∂p
∂xα

)
dx

+ µβ(ḡ, f̄ )
∫
K

G′
Wβ

∂Wβ

∂gi pdx = 0,

σκ

∫
K

G′θ
∂θ

∂ f j qdx + λαi (ḡ, f̄ )
∫
K

G′
Ui
α

∂Ui
α

∂ f j qdx

+ µβ(ḡ, f̄ )
∫
K

G′
Wβ

∂Wβ

∂ f j qdx = 0,

or, ∫
K

σκG′θ
∂θ

∂gi pdx +

∫
K

λαi

(
G′
Ui
α

∂Ui
α

∂gi p −
∂p
∂xα

)
dx

+

∫
K

µβG′
Wβ

∂Wβ

∂gi pdx = 0, (15)∫
K

σκG′θ
∂θ

∂ f j qdx +

∫
K

λαi G′
Ui
α

∂Ui
α

∂ f j qdx

+

∫
K

µβG′
Wβ

∂Wβ

∂ f j qdx = 0. (16)

Since λαi is a differentiable function at x ∈ K except at discontinuities, we have

∂
(
λαi p

)
∂xα

=
∂λαi
∂xα

p +
∂p
∂xα

λαi ,

involving that ∫
K

λαi
∂p
∂xα

dx =

∫
K

∂
(
λαi p

)
∂xα

dx −
∫
K

∂λαi
∂xα

pdx.

We obtain, due to the Gauss-Ostrogradsky formula, the following relation∫
K

∂
(
λαi p

)
∂xα

dx =

∫
∂K

(
λαi p

)
~νdx = 0,

where ~ν is the normal unit vector to the boundary ∂K and p|∂K = 0, implying that∫
K

λαi
∂p
∂xα

dx = −

∫
K

∂λαi
∂xα

pdx.

Using the above equality in Eq (15), we get∫
K

[
σκG′θ

∂θ

∂gi + λαi G′
Ui
α

∂Ui
α

∂gi + µβG′
Wβ

∂Wβ

∂gi +
∂λαi
∂xα

]
pdx = 0.

AIMS Mathematics Volume 9, Issue 9, 25184–25204.



25196

Now, by using a fundamental Lemma of variational calculus, from the above equality it follows

σκG′θ
∂θ

∂gi + λαi G′
Ui
α

∂Ui
α

∂gi + µβG′
Wβ

∂Wβ

∂gi +
∂λαi
∂xα

= 0.

Thus, the condition (8) is fulfilled. Proceeding as above, together with Eq (16), we get

σκG′θ
∂θ

∂ f j + λαi G′
Ui
α

∂Ui
α

∂ f j + µβG′
Wβ

∂Wβ

∂ f j = 0.

Therefore, the condition (9) is also fulfilled. From the relation (13), we get∫
K

µβGWβ

(
Wβ(x, ḡ, f̄ )

)
dx = 0,

and by taking into account Lemma 3.1, we get∫
K

µβ
[
GWβ

(
Wβ(x, g, f )

)
−GWβ

(
Wβ(x, ḡ, f̄ )

)]
dx ≤ 0.

Hence, we obtain condition (10) and this completes the proof. �

4. Necessary efficiency in (P) via Gθ-Kuhn-Tucker point

In accordance to Treanţă and Arana-Jiménez [25], we introduce the definition of Gθ-Kuhn-Tucker
point (in short, Gθ − KT point) to the problem (P).

Definition 4.1. A point (ḡ, f̄ ) ∈ D is said to be a Gθ − KT point to (P) if there are piecewise smooth
functions λ(x) ∈ Rnm and µ(x) ∈ Rq

+ such that the following conditions

G′θ(θ(x, ḡ(x), f̄ (x)))
∂θ

∂gi(x)
(x, ḡ(x), f̄ (x))

+λαi (x)G′
Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂gi(x)
(x, ḡ(x), f̄ (x))

+µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) ∂Wβ

∂gi(x)
(x, ḡ(x), f̄ (x)) +

∂λαi
∂xα

= 0, i = 1, n, (17)

G′θ(θ(x, ḡ(x), f̄ (x)))
∂θ

∂ f j(x)
(x, ḡ(x), f̄ (x))

+λαi (x)G′
Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂ f j(x)
(x, ḡ(x), f̄ (x))

+µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) ∂Wβ

∂ f j(x)
(x, ḡ(x), f̄ (x)) = 0, j = 1, k, (18)

(G-complementary slackness condition)

µβ(x)
[
GWβ

(
Wβ(x, g(x), f (x))

)
−GWβ

(
Wβ(x, ḡ(x), f̄ (x))

)]
≤ 0, (no summation)
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β ∈ Q, (g, f ) ∈ D, µ(x) ≥ 0, (19)

hold for all x ∈ K , except at discontinuity points.

In the next theorem, we establish a connection between Gθ − KT points to (P) and the efficient
solutions of (P). Specifically, we show that conditions formulated in Definition 3.2 are necessary for
the efficiency of a feasible point to (P).

Theorem 4.1. (Gθ-necessary efficiency conditions) Let (ḡ, f̄ ) ∈ D be a normal (σ > 0) efficient
solution to (P), and the constraint conditions (for the existence of multipliers) hold. Then, (ḡ, f̄ ) is a
Gθ − KT point to the problem (P).

Proof. Supposing that the constraint conditions (for the existence of multipliers) hold, then proceeding
on the lines of Treanţă and Arana-Jiménez [25], we can conclude from Theorem 3.1 that if (ḡ, f̄ ) ∈ D
is an efficient solution to the problem (P), then there are σ ∈ Rw

+ and piecewise smooth functions
λ(x) ∈ Rnm, µ(x) ∈ Rq

+ satisfying the following conditions (with summation over repeated indices):

σκG′θ(θ(x, ḡ(x), f̄ (x)))
∂θ

∂gi(x)
(x, ḡ(x), f̄ (x))

+ λαi (x)G′
Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂gi(x)
(x, ḡ(x), f̄ (x))

+ µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) ∂Wβ

∂gi(x)
(x, ḡ(x), f̄ (x)) +

∂λαi
∂xα

= 0, i = 1, n,

σκG′θ(θ(x, ḡ(x), f̄ (x)))
∂θ

∂ f j(x)
(x, ḡ(x), f̄ (x))

+ λαi (x)G′
Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂ f j(x)
(x, ḡ(x), f̄ (x))

+ µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) ∂Wβ

∂ f j(x)
(x, ḡ(x), f̄ (x)) = 0, j = 1, k,

(G-complementary slackness condition)

µβ(x)
[
GWβ

(
Wβ(x, g(x), f (x))

)
−GWβ

(
Wβ(x, ḡ(x), f̄ (x))

)]
≤ 0, (no summation)

β ≥ Q, (g, f ) ∈ D,
σ ≥ 0, µ(x) ≥ 0, (σ, µ(x)) , (0, 0),

hold for all x ∈ K , except at discontinuities. Since a normal efficient solution to (P) is an efficient
solution (ḡ, f̄ ) to (P) that satisfies the conditions (8)–(11) for all σ > 0, then we can assume that
σ = 1 = (1, · · · , 1) ∈ Rw (without loss of generality) and the proof is complete. �

5. Sufficient efficiency in (P) via Gθ-convexity and/or Gθ-quasiconvexity

In this section, we turn our attention to the Gθ-sufficient efficiency conditions for a feasible
solution to (P). More precisely, we will establish that any feasible solution to (P) will be an efficient
solution if the assumption of Gθ-convexity (and/or Gθ-quasiconvexity, Gθ-strictly quasiconvexity, Gθ-
monotonic quasiconvexity) is imposed on the involved functionals.
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Theorem 5.1. Let (ḡ, f̄ ) ∈ D be a Gθ−KT point to (P) such that the Gθ-necessary efficiency conditions
(17)–(19) are fulfilled. Also, we assume that the multiple integral functionals∫

K

θ(x, g(x), f (x))dx,
∫
K

µ(x)W(x, g(x), f (x))dx,

and ∫
K

λ(x)
(
U(x, g(x), f (x)) −

∂g(x)
∂x

)
dx,

are Gθ-convex at (ḡ, f̄ ). Then, (ḡ, f̄ ) is an efficient solution to (P).

Proof. We proceed by contradiction and assume that (ḡ, f̄ ) is not an efficient solution to (P). Then
there exists

(
g0, f 0

)
∈ D such that∫

K

θ
(
x, g0(x), f 0(x)

)
dx �

∫
K

θ(x, ḡ(x), f̄ (x))dx,

Since Gθ : Iθ 7→ Rw is an increasing function, from the above inequality it follows∫
K

Gθ

(
θ
(
x, g0(x), f 0(x)

))
dx �

∫
K

Gθ(θ(x, ḡ(x), f̄ (x)))dx. (20)

By hypotheses, the point (ḡ, f̄ ) satisfies the conditions (17)–(19), and by multiplying the relations (17)
and (18) with

(
g0 − ḡ

)
and

(
f 0 − f̄

)
, respectively, and then integrating and adding them, we obtain∫

K

(
g0 − ḡ

) {
G′θ(θ(x, ḡ(x), f̄ (x)))

∂θ

∂gi(x)
(x, ḡ(x), f̄ (x))

+λαi (x)G′
Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂gi(x)
(x, ḡ(x), f̄ (x))

+µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) ∂Wβ

∂gi(x)
(x, ḡ(x), f̄ (x)) +

∂λαi
∂xα

}
dx

+

∫
K

(
f 0 − f̄

) {
G′θ(θ(x, ḡ(x), f̄ (x)))

∂θ

∂ f j(x)
(x, ḡ(x), f̄ (x))

+λαi (x)G′
Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂ f j(x)
(x, ḡ(x), f̄ (x))

+µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) ∂Wβ

∂ f j(x)
(x, ḡ(x), f̄ (x))

}
dx = 0, (21)

i = 1, n, j = 1, k.

Since the vector-valued multiple integral functional
∫
K
θ(x, g(x), f (x))dx is Gθ-convex at (ḡ, f̄ ), we get∫

K

{
Gθ

(
θ
(
x, g0(x), f 0(x)

))
−Gθ(θ(x, ḡ(x), f̄ (x)))

}
dx

≥

∫
K

G′θ(θ(x, ḡ(x), f̄ (x)))
(
∂θ

∂g(x)
(x, ḡ(x), f̄ (x))

(
g0(x) − ḡ(x)

)
+

∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))

(
f 0(x) − f̄ (x)

))
dx,
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which in view of the condition (20), yields∫
K

G′θ(θ(x, ḡ(x), f̄ (x)))
(
∂θ

∂g(x)
(x, ḡ(x), f̄ (x))

(
g0(x) − ḡ(x)

)
+

∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))

(
f 0(x) − f̄ (x)

))
dx � 0. (22)

Again, from the assumption that
∫
K
µβ(x)Wβ(x, g(x), f (x))dx is Gθ-convex at (ḡ, f̄ ), we have∫

K

{
µβ(x)GWβ

(
Wβ

(
x, g0(x), f 0(x)

))
− µβ(x)GWβ

(
Wβ(x, ḡ(x), f̄ (x))

)}
dx

≥

∫
K

µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) (∂Wβ

∂g(x)
(x, ḡ(x), f̄ (x))

(
g0(x) − ḡ(x)

)
+
∂Wβ

∂ f (x)
(x, ḡ(x), f̄ (x))

(
f 0(x) − f̄ (x)

))
dx.

Since
(
g0, f 0

)
∈ D, by using the condition (19) and the above inequality, it follows∫

K

µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) (∂Wβ

∂g(x)
(x, ḡ(x), f̄ (x))

(
g0(x) − ḡ(x)

)
+
∂Wβ

∂ f (x)
(x, ḡ(x), f̄ (x))

(
f 0(x) − f̄ (x)

))
dx ≤ 0, (23)

Similarly, from the assumption that
∫
K
λ(x)

(
U(x, g(x), f (x)) − ∂g(x)

∂t

)
dx is Gθ-convex at (ḡ, f̄ ) and

feasibility of
(
g0, f 0

)
in (P), it results∫

K

[(
λαi (x)G′

Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂g(x)
(x, ḡ(x), f̄ (x)) +

∂λαi
∂xα

) (
g0(x) − ḡ(x)

)
+

(
λαi (x)G′

Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂ f (x)
(x, ḡ(x), f̄ (x))

) (
f 0(x) − f̄ (x)

)]
dx ≤ 0. (24)

By adding the inequalities (22)–(24), we have∫
K

(g0 − ḡ
) {

G′θ(θ(x, ḡ(x), f̄ (x)))
∂θ

∂gi(x)
(x, ḡ(x), f̄ (x))

+ λαi (x)G′
Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂gi(x)
(x, ḡ(x), f̄ (x))

+µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) ∂Wβ

∂gi(x)
(x, ḡ(x), f̄ (x)) +

∂λαi
∂xα

}
dx

+

∫
K

(
f 0 − f̄

) {
G′θ(θ(x, ḡ(x), f̄ (x)))

∂θ

∂ f j(x)
(x, ḡ(x), f̄ (x))

+ λαi (x)G′
Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂ f j(x)
(x, ḡ(x), f̄ (x))

+µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) ∂Wβ

∂ f j(x)
(x, ḡ(x), f̄ (x))

}
dx � 0,
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which contradicts the relation (21). Hence, the proof is complete. �

The next theorems assert new Gθ-sufficient efficiency conditions under (strictly, monotonic) Gθ-
quasiconvexity assumptions.

Theorem 5.2. Let (ḡ, f̄ ) ∈ D be a Gθ−KT point to (P) such that the Gθ-necessary efficiency conditions
(17)–(19) are fulfilled. Also, we assume that the multiple integral functionals

Θ(g, f ) :=
∫
K

θ(x, g(x), f (x))dx, Y(g, f ) :=
∫
K

µ(x)W(x, g(x), f (x))dx,

are Gθ-quasiconvex and Gθ-stricly quasiconvex, respectively, and

H(g, f ) :=
∫
K

λ(x)
(
U(x, g(x), f (x)) −

∂g(x)
∂x

)
dx,

is Gθ-monotonic quasiconvex at (ḡ, f̄ ). Then, (ḡ, f̄ ) is an efficient solution to (P).

Proof. Let us assume that (ḡ, f̄ ) is not an efficient solution to (P), and consider the following non-
empty set

S =
{
(g, f ) ∈ D | Θ(g, f ) ≤ Θ(ḡ, f̄ ), H(g, f ) = H(ḡ, f̄ ), Y(g, f ) ≤ Y(ḡ, f̄ )

}
.

By hypothesis, for (g, f ) ∈ S , we get
Θ(g, f ) ≤ Θ(ḡ, f̄ ),

and by using the Gθ-quasiconvexity property, it follows∫
K

[
G′θ(θ(x, g(x), f (x)))

(
∂θ

∂g(x)
(x, ḡ(x), f̄ (x))(g(x) − ḡ(x))

+
∂θ

∂ f (x)
(x, ḡ(x), f̄ (x))( f (x) − f̄ (x))

)]
dx ≤ 0. (25)

For (g, f ) ∈ S , the equality H(g, f ) = H(ḡ, f̄ ) holds, and by using the Gθ-monotonic quasiconvexity
property, it follows∫

K

[(
λαi (x)G′

Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂g(x)
(x, ḡ(x), f̄ (x)) +

∂λαi
∂xα

) (
g0(x) − ḡ(x)

)
+

(
λαi (x)G′

Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂ f (x)
(x, ḡ(x), f̄ (x))

) (
f 0(x) − f̄ (x)

)]
dx = 0. (26)

Also, for (g, f ) ∈ S , the inequality Y(g, f ) ≤ Y(ḡ, f̄ ), and by using the Gθ-strictly quasiconvexity
property, it follows∫

K

µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) (∂Wβ

∂g(x)
(x, ḡ(x), f̄ (x))

(
g0(x) − ḡ(x)

)
+
∂Wβ

∂ f (x)
(x, ḡ(x), f̄ (x))

(
f 0(x) − f̄ (x)

))
dx < 0. (27)
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By hypotheses, the point (ḡ, f̄ ) satisfies the conditions (17)–(19), and by multiplying the
relations (17) and (18) with

(
g0 − ḡ

)
and

(
f 0 − f̄

)
, respectively, and then integrating and adding them,

we obtain ∫
K

(
g0 − ḡ

) {
G′θ(θ(x, ḡ(x), f̄ (x)))

∂θ

∂gi(x)
(x, ḡ(x), f̄ (x))

+λαi (x)G′
Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂gi(x)
(x, ḡ(x), f̄ (x))

+µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) ∂Wβ

∂gi(x)
(x, ḡ(x), f̄ (x)) +

∂λαi
∂xα

}
dx

+

∫
K

(
f 0 − f̄

) {
G′θ(θ(x, ḡ(x), f̄ (x)))

∂θ

∂ f j(x)
(x, ḡ(x), f̄ (x))

+λαi (x)G′
Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂ f j(x)
(x, ḡ(x), f̄ (x))

+µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) ∂Wβ

∂ f j(x)
(x, ḡ(x), f̄ (x))

}
dx = 0, (28)

i = 1, n, j = 1, k.

By adding the inequalities (25)–(27), we have∫
K

(g0 − ḡ
) {

G′θ(θ(x, ḡ(x), f̄ (x)))
∂θ

∂gi(x)
(x, ḡ(x), f̄ (x))

+ λαi (x)G′
Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂gi(x)
(x, ḡ(x), f̄ (x))

+µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) ∂Wβ

∂gi(x)
(x, ḡ(x), f̄ (x)) +

∂λαi
∂xα

}
dx

+

∫
K

(
f 0 − f̄

) {
G′θ(θ(x, ḡ(x), f̄ (x)))

∂θ

∂ f j(x)
(x, ḡ(x), f̄ (x))

+ λαi (x)G′
Ui
α

(
Ui

α(x, ḡ(x), f̄ (x))
) ∂Ui

α

∂ f j(x)
(x, ḡ(x), f̄ (x))

+µβ(x)G′
Wβ

(
Wβ(x, ḡ(x), f̄ (x))

) ∂Wβ

∂ f j(x)
(x, ḡ(x), f̄ (x))

}
dx < 0,

which contradicts the relation (28). Hence, the proof is complete. �

Next, an immediate consequence of the previous theorem can be formulated as follows.

Theorem 5.3. Let (ḡ, f̄ ) ∈ D be a Gθ−KT point to (P) such that the Gθ-necessary efficiency conditions
(17)–(19) are fulfilled. Also, we assume that the multiple integral functionals

Θ(g, f ) :=
∫
K

θ(x, g(x), f (x))dx, Y(g, f ) :=
∫
K

µ(x)Wβ(x, g(x), f (x))dx,
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are Gθ-strictly quasiconvex and Gθ-quasiconvex, respectively, and

H(g, f ) :=
∫
K

λ(x)
(
U(x, g(x), f (x)) −

∂g(x)
∂x

)
dx,

is Gθ-monotonic quasiconvex at (ḡ, f̄ ). Then, (ḡ, f̄ ) is an efficient solution to (P).

Proof. The proof follows in the same manner as in Theorem 5.2, by replacing the sign ”≤” in (25) with
”<”, and the sign ”<” in (27) with ”≤”. �

6. Conclusions

In this study, we have formulated new conditions of efficiency for a class of multiple-objective
optimal control models under generalized assumptions. In this regard, we first defined the Gθ-Fritz
John problem and, by considering it, we established a link between the solutions of Gθ-Fritz John
problem and efficient solutions of the considered model (P). In addition, we formulated the Gθ-
necessary efficiency conditions for a feasible solution in (P). Also, a connection between the newly
defined concept of Gθ − KT points to (P) and the efficient solutions of (P) was formulated. Finally,
we turned our attention to the Gθ-sufficient efficiency conditions for a feasible solution to (P). In this
regard, we established that any feasible solution to (P) is an efficient solution if the assumption of
Gθ-convexity (and/or Gθ-quasiconvexity, Gθ-strictly quasiconvexity, Gθ-monotonic quasiconvexity) is
imposed on the involved functionals.

As further developments associated with this paper, the authors mention the study of well-
posedness and generalized well-posedness. Also, a duality theory related to this class of extremization
problems could be another interesting topic.
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