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1. Introduction and main results

Let H∗k denote the set of all primitive holomorphic cusp forms of even integral weight k ≥ 2 for the
full modular group S L(2,Z). Every f ∈ H∗k has a Fourier expansion at the cusp∞ of the type

f (z) =
∞∑

n=1

λ f (n)n
k−1

2 e2πinz.

The Fourier coefficient λ f (n) satisfies the multiplicative relation

λ f (m)λ f (n) =
∑

d|(m,n)

λ f

(mn
d2

)
.

In 1974, Deligne [1] proved the Ramanujan-Petersson conjecture

|λ f (n)| ≤ d(n) ≪ nϵ , (1.1)

where d(n) is the divisor function.
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For f ∈ H∗k , we define the i-th symmetric power L-function attached to f as

L(symi f , s) =
∏

p

i∏
m=0

(
1 −
α f (p)i−mβ f (p)m

ps

)−1

(1.2)

provided thatℜs > 1, where α f (p) and β f (p) are two complex numbers satisfying

α f (p)β f (p) = |α f (p)| = |β f (p)| = 1, λ f (p) = α f (p) + β f (p).

We can express it as a Dirichlet series:

L(symi f , s) =
∞∑

n=1

λsymi f (n)
ns =

∏
p

(
1 +

∞∑
v=1

λsymi f (pv)
pvs

)
, (1.3)

where λsymi f (n) is a real multiplicative function, and

λsymi f (p) =
i∑

m=0

α f (p)i−mβ f (p)m = λ f (pi).

It’s easy to see that L(sym0 f , s) = ζ(s),
L(sym1 f , s) = L( f , s).

Let f , g ∈ H∗k be two different cusp forms. The Rankin-Selberg L-function attached to symi f and
sym jg is defined by

L(symi f × sym jg, s) =
∏

p

i∏
m=0

j∏
n=0

(
1 −
α f (p)i−mβ f (p)mαg(p) j−nβg(p)n

ps

)−1

forℜs > 1. Further, this can also be written as

L(symi f × sym jg, s) =
∞∑

n=1

λsymi f×sym jg(n)
ns =

∏
p

(
1 +

∞∑
v=1

λsymi f×sym jg(pv)
pvs

)
. (1.4)

Then, we get

λsymi f×sym jg(p) =
i∑

m=0

j∑
n=0

α f (p)i−mβ f (p)mα f (p) j−nβ f (p)n = λsymi f (p)λsym jg(p),

where i, j ≥ 1 are integers. In particular, we haveL(sym1 f × sym1g, s) = L( f × g, s),
L(sym1 f × sym jg, s) = L( f × sym jg, s).

For a more comprehensive investigation on basic properties of symmetric power L-functions and
Rankin-Selberg L-functions, the interested readers can refer to [2, Chapter 13].
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There are many hidden structures underlying the Fourier coefficients λ f (n). In analytic number
theory, it is a classical problem to estimate the sums of the type∑

n≤x

λ f (n)lλg(n)m, (1.5)

where l,m ∈ N. The study of O-results on the sum (1.5) is of great significance and has attracted much
attention of many number theorists. For l = 1 and m = 0, the best result to date was given by Wu [3].
Rankin [4] and Selberg [5] studied the average behavior of the power sum for the case l = 2 and m = 0.
More recently, Huang [6] established the better result∑

n≤x

λ f (n)2 = Cx + O(x
3
5−

1
560+ϵ).

Fomenko [7] solved the problem when l = 3, 4 and m = 0. Lü [8] improved Fomenko’s result and
successfully established the results with l = 6, 8 and m = 0 for the first time. Shortly afterward, Lau
et al. [9] considered more general cases and obtained better results. Recently, Newton and Thorne [10]
proved in a general setting that symi f is automorphic for i ≥ 1. On the basis of the deep results of
Newton and Thorne, by applying some techniques of analytic number theory, Xu [11] and Liu [12]
investigated the average behavior of the power sums (1.5) with l ∈ N and m = 0. Hua [13] focused on
the sum (1.4) with l ≥ 9,m = 0 over indices that are sums of two squares.

For the power sum (1.5) with m > 0, Ogg [14] first established an asymptotic formula for l,m = 1.
Subsequently, Fomenko [7] considered the sum of coefficient of the Rankin-Selberg L-function, and
then successfully attained the O-results of the case of l = 1,m = 2 and l = 2,m = 2. In 2014, Lü [15]
showed that ∑

n≤x

λ f (n)λg(n) ≪ x
3
5 log x−

2
3 (1− 8

3π )

and ∑
n≤x

λ f (n)2λg(n)2 = Cx + O(x
7
8+ϵ), (1.6)

which improved the results of Fomenko [7]. The current best known estimate for (1.6) is due to He [16],
who showed that ∑

n≤x

λ f (n)2λg(n)2 = Cx + O(x
13
15+ϵ).

Lü [17] also investigated the cases of l = m = 3, l = 4,m = 2, and l = 4,m = 4.
The first purpose of this paper is to further improve the upper bounds on the error term of the

sum (1.5) with m = 0 and m ≥ 2, respectively. The result is formulated in the following theorem:

Theorem 1.1. Let f ∈ H∗k and g ∈ H∗k be two different nonzero cusp forms:
(i) For l = 2r ≥ 6, we have ∑

n≤x

λ f (n)l = xPl(log x) + O
(
xθl+ϵ

)
,

where Pl(y) denotes a polynomial in y of degree
(

l
r

)
−

(
l

r−1

)
− 1, and

θl =

 3271
3391 , l = 6,
1 − θ−1

2,r, l ≥ 8.
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Here,

θ2,r =
13
42r

(
l

r − 1

)
+

18
5(r − 1)

(
l

r − 2

)
+

1
2

( r−2∑
n=1

(l − 2n + 1)2

n

(
l

n − 1

)
+ l + 1

)
−

3
14
.

(ii) For l ≥ 2, m ≥ 2, we have∑
n≤x

λ f (n)lλg(n)m = xPl,m(log x) + O
(
xθl,m+ϵ

)
,

where Pl,m(y) denotes a polynomial in y of degree
((

l
[ l

2 ]

)
−

(
l

[ l
2 ]−1

))((
m

[ m
2 ]

)
−

(
l

[ m
2 ]−1

))
− 1 for 2 | l and 2 | m;

otherwise, 0. In the O-term, we have

θ2,2 =
773
893 = 0.865621 · · · θ2,3 = θ3,2 =

206
221 = 0.932126 · · · θ2,4 = θ4,2 = 349

361 = 0.966759 · · ·

θ2,6 = θ6,2 =
14611
14731 = 0.991853 · · · θ4,4 = 3677

3707 = 0.991907 · · · θ4,6 = θ6,4 =
29941
30001 = 0.998000 · · ·

θl,m =


1 − θ−1

2,2,r,r̄, l = 2r,m = 2r̄, l = m = 6, l ≥ 8 or m ≥ 8,
1 − θ−1

1,1,t,t̄, l = 2t + 1,m = 2t̄ + 1, l,m ≥ 3,
1 − θ−1

1,2,t,r̄, l = 2t + 1,m = 2r̄, l , 3 or m , 2,
1 − θ−1

2,1,r,t̄, l = 2r,m = 2t̄ + 1, l , 2 or m , 3.

Here,

θ2,2,r,r̄ =
13

(
l

r−1

)(
m

r̄−1

)
42rr̄

+
18

(
l

r−2

)(
m

r̄−1

)
5r̄(r − 1)

+
18

(
l

r−1

)(
m

r̄−2

)
5r(r̄ − 1)

+

r−2∑
n1=1

(l−2n1+1)2

r̄n1

(
l

n1−1

)(
m

r̄−1

)
+ (l + 1)1

r̄

(
m

r̄−1

)
2

+

r̄−2∑
n2=1

(m−2n2+1)2

rn2

(
l

r−1

)(
m

n2−1

)
(m + 1)1

r

(
l

r−1

)
2

+
(l + 1)(m + 1)

2
+

r−1∑
n1=1

(l−2n1+1)2(m+1)
n1

(
l

n1−1

)
2

+

r̄−1∑
n2=1

(m−2n2+1)2(l+1)
n2

(
m

n2−1

)
2

+

r−1∑
n1=1

r̄−1∑
n2=1

(l−2n1+1)2(m−2n2+1)2

n1n2

(
l

n1−1

)(
m

n2−1

)
2

−
3

14
,

θ1,1,t,t̄ =
(l + 1)(m + 1)

2
+

t∑
n1=1

t̄∑
n2=1

(l−2n1+1)2(m−2n2+1)2

n1n2

(
l

n1−1

)(
m

n2−1

)
2

+

t∑
n1=1

(l−2n1+1)2(m+1)
n1

(
l

n1−1

)
2

+

t̄∑
n2=1

(m−2n2+1)2(l+1)
n2

(
m

n2−1

)
2

,

θ1,2,t,r̄ =
4
(

l
t−1

)(
m

r̄−1

)
3tr̄

+
81

(
l

t−1

)(
m

r̄−2

)
5t(r̄ − 1)

+

4(m+1)
t

(
l

t−1

)
+

r̄−2∑
n2=1

4(m−2n2+1)2

tn2

(
l

t−1

)(
m

n2−1

)
2
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+
(l + 1)(m + 1)

2
+

t−1∑
n1=1

(l−2n1+1)2(m+1)
n1

(
l

n1−1

)
2

+

r̄∑
n2=1

(m−2n2+1)2(l+1)
n2

(
m

n2−1

)
2

+

t−1∑
n1=1

r̄∑
n2=1

(l−2n1+1)2(m−2n2+1)2

n1n2

(
l

n1−1

)(
m

n2−1

)
2

,

θ2,1,r,t̄ =
4
(

l
r−1

)(
m

t̄−1

)
3rt̄

+
81

(
l

r−2

)(
m

t̄−1

)
5t̄(r − 1)

+

4(l+1)
t̄

(
m

t̄−1

)
+

t−2∑
n1=1

4(l−2n1+1)2

t̄n1

(
l

n1−1

)(
m

t̄−1

)
2

+
(l + 1)(m + 1)

2
+

r∑
n1=1

(l−2n1+1)2(m+1)
n1

(
l

n1−1

)
2

+

t̄−1∑
n2=1

(m−2n2+1)2(l+1)
n2

(
m

n2−1

)
2

+

r∑
n1=1

t̄−1∑
n2=1

(l−2n1+1)2(m−2n2+1)2

n1n2

(
l

n1−1

)(
m

n2−1

)
2

.

Remark 1.2. Compared with Liu [12, Theorem 1.1], He [16, Proposition 4.2], and [17, Theorems 1.4
and 1.5], we improve the previous results. In fact, we have

Old θ′6 = 0.9647 · · · θ′8 = 0.9914 · · · θ′2,2 = 0.8666 · · · θ′4,2 = 0.9687 · · · θ′4,4 = 0.9921 · · ·

New θ6 = 0.9646 · · · θ8 = 0.9913 · · · θ2,2 = 0.8656 · · · θ4,2 = 0.9667 · · · θ4,4 = 0.9919 · · ·

As an application of Theorem 1.1, we then investigate quantitative results of the sign changes of
λ f (n) and λ f (n)λg(n). The sign changes of the sequence of Fourier coefficients in short intervals was
first investigated by Murty [18]. Later, Meher and Murty [19] established a lower bound for the number
of sign changes of the sequence {λ f (n)}. In addition, the analogous questions of simultaneous sign
changes of λ f (n)λg(n) was considered by Kumari and Murty [20], where f and g are two different cusp
forms. In 2019, He [16] improved the result of Kumari and Murty [20]. Here, we obtain the better
quantitative results for sign changes of the sequences {λ f (n)} and {λ f (n)λg(n)}.

Theorem 1.3. Let λ f (n) and λg(n) be the coefficients of L( f , s) and L(g, s), respectively.
(i) Suppose f ∈ H∗k . Then, for any r1 with 67

112 < r1 < 1, the sequence {λ f (n)} has at least one sign
change for n ∈ (x, x + xr1]. Moreover, the number of sign changes for n ≤ x is≫ x1−r1 for sufficiently
large x.

(ii) Suppose f , g ∈ H∗k . Then, for any r2 with 773
893 < r2 < 1, the sequence {λ f (n)λg(n)} has at least

one sign change for n ∈ (x, x + xr2]. Moreover, the number of sign changes for n ≤ x is ≫ x1−r2 for
sufficiently large x.

Remark 1.4. In view of

3
5
= 0.6 > 0.5982 · · · =

67
112
,

13
15
= 0.8666 · · · > 0.8656 · · · =

773
893
,

we improve the results of Meher and Murty [19, Theorem 1.2] and He [16, Theorem 1.5].
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2. Preliminaries

In this section, we will recall and establish some preliminary results which are used to prove the
main theorems in this paper.

We define

Fl(s) =
∞∑

n=1

λ f (n)l

ns and Fl,m(s) =
∞∑

n=1

λ f (n)lλg(n)m

ns . (2.1)

Lemma 2.1. Let f ∈ H∗k , then we have

Fl(s) = Gl(s)Hl(s),

where

Gl(s) =
[ l

2 ]∏
n=0

L(syml−2n f , s)((
l
n)−( l

n−1)).(
l
n

)
is the binomial coefficient with the convention that

(
l
n

)
= 0 if n < 0, and the function Hl(s) admits a

Dirichlet series convergent absolutely inℜs > 1/2. Noting Hl(s) , 0 forℜs = 1.

Proof. This can be found in Xu [11, Lemma 5]. □

Based on Ivić [21, Theorem 8.4], Bourgain [22, Theorem 5], and Ramachandra and
Sankaranarayanan [23, Lemma 2], we give the following lemma:

Lemma 2.2. For any ϵ > 0, we have∫ T

0

∣∣∣∣∣ζ(5
7
+ iτ)

∣∣∣∣∣12

dτ ≪ϵ T 1+ϵ (2.2)

uniformly for T ≥ 1 and
ζ(σ + iτ) ≪ (|τ + 1|)max{ 13

42 (1−σ),0}+ϵ (2.3)

uniformly for 1/2 ≤ σ ≤ 2 and |τ| ≥ 1. Moreover, for U > U0, where U0 is sufficiently large, there
exists a T ∗ ∈ (U, 2U) such that

max
σ≥ 1

2

|ζ(σ + iT ∗)| ≪ϵ exp(C(log log U)2). (2.4)

Lemma 2.3. Let f ∈ H∗k , then we have∫ T

0

∣∣∣∣∣L( f ,
5
8
+ iτ)

∣∣∣∣∣4 dτ ≪ f ,ϵ T 1+ϵ (2.5)

uniformly for T ≥ 1 and

L( f , σ + iτ) ≪ f ,ϵ (|τ + 1|)max{ 23 (1−σ),0}+ϵ , (2.6)

L(sym2 f , σ + iτ) ≪ f ,ϵ (|τ + 1|)max{ 65 (1−σ),0}+ϵ , (2.7)

L
(

f × sym2g, σ + iτ
)
≪ f ,g,ϵ (|τ + 1|)

27
10 (1−σ)+ϵ (2.8)

uniformly for 1
2 ≤ σ ≤ 2 and |τ| ≥ 1.

AIMS Mathematics Volume 9, Issue 9, 25166–25183.
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Proof. These are Ivić [24, Theorem 2], Good [25, Corollary 3], Lin et al. [26, Corollary 1.2], and Lin
and Sun [27, Corollary 1.3], respectively. □

For general L-functions, we have the following averaged or individual convexity bounds (see [28]):

Lemma 2.4. Suppose that L(s) is a general L-function of degree m. Then, for any ϵ > 0, we have∫ 2T

T
|L(σ + iτ)|2dτ ≪ T m(1−σ)+ϵ (2.9)

uniformly for 1/2 ≤ σ ≤ 2 and T ≥ 1, and

L(σ + iτ) ≪ (|τ| + 1)max{m2 (1−σ),0}+ϵ (2.10)

uniformly for 1/2 ≤ σ ≤ 1 + ϵ and |τ| ≥ 1.

Remark 2.5. According to the Euler product (1.2), the degree of L(sym j f , s) is j + 1. In the proof of
Theorem 1.1, we take m = j + 1 in Lemma 2.4 for L(sym j f , s), j ≥ 3. Similarly, take m = (i + 1)( j + 1)
for the Rankin-Selberg L-function L(symi f × sym jg, s).

3. Proof of Theorem 1.1

3.1. Proof of (i) in Theorem 1.1

By the Perron formula ([29, Proposition 5.54]) with (1.1), we obtain∑
n≤x

λ f (n)l =
1

2πi

∫ 1+ϵ+iT

1+ϵ−iT
Fl(s)

xs

s
ds + O f ,ϵ

(
x1+ϵ

T

)
uniformly for 2 ≤ T ≤ x, where the implied constant depends only on f and ϵ. From Lemma 2.1, we
can easily get that the point s = 1 is the only pole of the integrand in the region σ0 ≤ σ ≤ 1 + ϵ and
|τ| ≤ T for any σ0 ∈ [1/2 + ϵ, 1). Using the Cauchy residue theorem, we get∑

n≤x

λ f (n)l = Res
s=1

Fl(s)
xs

s
+

1
2πi

(∫ 1+ϵ+iT

σ0+iT
+

∫ 1+ϵ−iT

σ0−iT
+

∫ σ0+iT

σ0−iT

)
Fl(s)

xs

s
ds + O f ,ϵ

(
x1+ϵ

T

)
.

The factorization expression of Fl(s) in Lemma 2.1 contains ζ(s)(
l
n)−( l

n−1), which means s = 1 is a pole
of order

(
l
n

)
−

(
l

n−1

)
of Fl(s) in the half-plane ℜs > 1/2. Thus, by standard argument in complex

analysis, we know the residue at s = 1 is equal to xPl(log x), where Pl(log x) is a polynomial of degree(
l
r

)
−

(
l

r−1

)
− 1 for l = 2r; otherwise, 0. Thus, we get

∑
n≤x

λ f (n)l = xPl(log x) +
1

2πi

(∫ 1+ϵ+iT

σ0+iT
+

∫ 1+ϵ−iT

σ0−iT
+

∫ σ0+iT

σ0−iT

)
Fl(s)

xs

s
ds + O f ,ϵ

( x1+ϵ

T

)
. (3.1)

The absolute convergence of Hl(s) forℜs > 1/2 + ϵ yields Hl(s) ≪ 1. Hence, (3.1) can be written as∑
n≤x

λ f (n)l = xPl(log x) + O f ,ϵ

( x1+ϵ

T
+ Rh

l + R
v
l

)
, (3.2)

AIMS Mathematics Volume 9, Issue 9, 25166–25183.
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where

R
h
l =

1
T

∫ 1+ϵ

σ0

|Gl(σ + iT )|xσdσ

and

R
v
l = xσ0

∫ T

1
|Gl(σ0 + iτ)|

dτ
τ
≪ xσ0+ϵ sup

1≤T1≤T

1
T1

∫ 2T1

T1

|Gl(σ0 + iτ)|dτ.

Our goal is to test for constraints on Rh
l and Rv

l , which can certify Rh
l ≪ x1+ϵ/T and Rv

l ≪ x1+ϵ/T .
Let us consider 2 | l, l ≥ 6. When the power of ζ(s) is less than 12, (2.2) cannot be used directly. In

order to get better results, we consider it separately.
Case 1. For l = 6, according to Lemma 2.1, we have

G6(s) = ζ(s)5L(sym2 f , s)9L(sym4 f , s)5L(sym6 f , s).

Taking U = x
120

3391 in (2.4), there must exist a T ∗ ∈ (U, 2U) such that

ζ(σ + iT ∗) ≪ϵ exp(C(log log U)2) ≪ Uϵ .

Suppose that T = δU with 1 < δ < 2. Now, we choose

σ0 =
5
7
, T = T ∗ = δU = δx

120
3391

in (3.2). Then, we obtain

R
h
6 ≪

1
T

∫ 1+ϵ

5
7

(T
δ

)5ϵ
T ∗(9×

6
5+5× 5

2+
7
2 )(1−σ)+ϵxσdσ

≪ T
129
5 +ϵ

∫ 1+ϵ

5
7

(
x

T
134

5

)σ
dσ ≪

x1+ϵ

T
+ x

5
7+ϵT

233
35 +ϵ .

(3.3)

Applying the Hölder’s inequality, we obtain

R
v
6 ≪x

5
7+ϵ sup

1≤T1≤T

1
T1

∫ 2T1

T1

∣∣∣∣∣G6(
5
7
+ iτ)

∣∣∣∣∣ dτ
≪x

5
7+ϵ sup

1≤T1≤T

1
T1

(∫ 2T1

T1

|ζ(
5
7
+ iτ)|12dτ

) 5
12

(∫ 2T1

T1

|L(sym4 f ,
5
7
+ iτ)|

60
7 dτ

) 7
12

× L(sym2 f ,
5
7
+ iT1)9L(sym6 f ,

5
7
+ iT1).

By (2.2), (2.7), and Lemma 2.4, we have

R
v
6 ≪ x

5
7+ϵT−1+ 5

12 (1+ϵ)+(5× 7
12+

5
2×

46
7 ×

7
12+9× 6

5+
7
2 )(1− 5

7 )+ϵ ≪ x
5
7+ϵT

2971
420 +ϵ . (3.4)

Combining (3.2)–(3.4), we obtain∑
n≤x

λ f (n)6 = xP6(log x) + O
( x1+ϵ

T
+ x

5
7+ϵT

2971
420 +ϵ

)
.
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Recall that
T = δx

120
3391

with 1 < δ < 2. Thus, we get the required result.
Case 2. When l = 2r ≥ 8, according to Lemma 2.1, we obtain

Gl(s) =
r∏

n=0

L(syml−2n f , s)

(
( l

n)−( l
n−1)

)
.

Take U = xθ
−1
2,r in (2.4), where

θ2,r =
13
42r

(
l

r − 1

)
+

18
5(r − 1)

(
l

r − 2

)
+

r−2∑
n=1

(l−2n+1)2

n

(
l

n−1

)
+ l + 1

2
−

3
14
.

Then, there must exist a T ∗ ∈ (U, 2U) such that

ζ(σ + iT ∗) ≪ϵ exp(C(log log U)2) ≪ Uϵ .

Suppose that T = δU with 1 < δ < 2. Now, we choose

σ0 =
5
7
, T = T ∗ = δU = δxθ

−1
2,r

in (3.2). Then, we obtain

R
h
l ≪

1
T

∫ 1+ϵ

5
7

(T
δ

) 1
r ( l

r−1)ϵT

 18
5(r−1) ( l

r−2)+
r−2∑
n=1

(l−2n+1)2
n ( l

n−1)+l+1

2

(1−σ)+ϵ

xσdσ

≪ T θ2,r−
13
42r ( l

r−1)+ 3
14−1+ϵ

∫ 1+ϵ

5
7

(
x

T θ2,r−
13
42r ( l

r−1)+ 3
14

)σ
dσ

≪
x1+ϵ

T
+ x

5
7+ϵT

2
7 (θ2,r− 13

42r ( l
r−1)+ 3

14 )−1+ϵ . (3.5)

Applying the Hölder inequality and (2.2), we obtain

R
v
l ≪x

5
7+ϵ sup

1≤T1≤T

1
T1

∫ 2T1

T1

∣∣∣∣∣Gl(
5
7
+ iτ)

∣∣∣∣∣ dτ
≪x

5
7+ϵ sup

1≤T1≤T

1
T1

(∫ 2T1

T1

|ζ(
5
7
+ iτ)|12dτ

)
ζ(

5
7
+ iT1)

13
41r ( l

r−1)−12

×

r−2∏
n=0

L(syml−2n f ,
5
7
+ iT1)((

l
n)−( l

n−1))

≪x
5
7+ϵT

2
7 θ2,r−1+ϵ .

(3.6)

Combining (3.2), (3.5), and (3.6), we obtain∑
n≤x

λ f (n)l = xPl(log x) + O
(

x1+ϵ

T
+ x

5
7+ϵT

2
7 θ2,r−1+ϵ

)
.

Recall that T = δxθ
−1
2,r with 1 < δ < 2. Thus, we get the required result.
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3.2. Proof of (ii) in Theorem 1.1

To prove these results, we will use the following proposition:

Proposition 3.1. Let f , g ∈ H∗k , then we have

Fl,m(s) = Gl,m(s)Hl,m(s),

where

Gl,m(s) =
[ l

2 ]∏
n1=0

[ m
2 ]∏

n2=0

L(syml−2n1 f × symm−2n2g, s)
(
( l

n1
)−( l

n1−1)
)(
(m

n2
)−( m

n2−1)
)
, (3.7)

(
l

n1

)
and

(
m
n2

)
are the binomial coefficients with the convention that

(
l

n1

)
= 0 and

(
m
n2

)
= 0 if n1, n2 < 0,

and the function Hl,m(s) admits a Dirichlet series convergent absolutely inℜs > 1/2. Note Hl,m(s) , 0
forℜs = 1.

Proof. For f ∈ H∗k , we know

Fl,m(s) =
∞∑

n=1

λ f (n)lλg(n)m

ns =
∏

p

(
1 +

∑
v≥1

λ f (pv)lλg(pv)m

pvs

)
.

By [11, Lemma 5], we get that

λ f (p)l =

[ l
2 ]∑

n1=0

((
l

n1

)
−

(
l

n1 − 1

))
λsyml−2n1 f (p),

λg(p)m =

[ m
2 ]∑

n2=0

((
m
n2

)
−

(
m

n2 − 1

))
λsymm−2n2 g(p).

Hence, the coefficient of p−s is

λ f (p)lλg(p)m =


[ l

2 ]∑
n1=0

((
l

n1

)
−

(
l

n1 − 1

))
λsyml−2n1 f (p)


×

 [ m
2 ]∑

n2=0

((
m
n2

)
−

(
m

n2 − 1

))
λsymm−2n2 g(p)


=

[ l
2 ]∑

n1=0

[ m
2 ]∑

n2=0

((
l

n1

)
−

(
l

n1 − 1

)) ((
m
n2

)
−

(
m

n2 − 1

))
λsyml−2n1 f×symm−2n2 g(p).

We define
Hl,m(s) = Fl,m(s)/Gl,m(s),

and its p-local factor is of the form 1 + O(p−2s). So, the Euler product (hence, the Dirichlet series) of
Hl,m(s) converges absolutely inℜs > 1/2. □

Utilizing the similar method in Section 3.1 and the decomposition in Proposition 3.1, we can get
the claim easily.
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3.2.1. Even l and m

Case 1. When l = m = 2, according to Proposition 3.1, we have

G2,2(s) = ζ(s)L(sym2 f , s)L(sym2g, s)L(sym2 f × sym2g, s).

Taking U = x120/893 in (2.4), there must exist a T ∗ ∈ (U, 2U) such that

ζ(σ + iT ∗) ≪ϵ exp(C(log log U)2) ≪ Uϵ .

Suppose that T = δU with 1 < δ < 2. Now, we choose

σ0 =
5
7
, T = T ∗ = δU = δx

120
893

in (3.2). Then,

R
h
2,2 ≪

1
T

∫ 1+ϵ

5
7

(T
δ

)ϵ
T ( 6

5+
6
5+

9
2 )(1−σ)+ϵxσdσ

≪ T
59
10+ϵ

∫ 1+ϵ

5
7

(
x

T
69
10

)σ
dσ ≪

x1+ϵ

T
+ x

5
7+ϵT

34
35+ϵ .

(3.8)

Applying Hölder’s inequality, we obtain

R
v
2,2 ≪x

5
7+ϵ sup

1≤T1≤T

1
T1

∫ 2T1

T1

∣∣∣∣∣G2,2(
5
7
+ iτ)

∣∣∣∣∣ dτ
≪x

5
7+ϵ sup

1≤T1≤T

1
T1

(∫ 2T1

T1

|ζ(
5
7
+ iτ)|12dτ

) 1
12

(∫ 2T1

T1

|L(sym2 f × sym2g,
5
7
+ iτ)|2dτ

) 1
2

×

(∫ 2T1

T1

|L(sym2 f ,
5
7
+ iτ)|

12
5 dτ

) 5
12

L(sym2g,
5
7
+ iT1).

By (2.2), (2.7), and Lemma 2.4, we have

R
v
2,2 ≪ x

5
7+ϵT−1+ 1

12 (1+ϵ)+( 9
2+

2
5×

5
12×

6
5+

5
12×3+ 6

5 )(1− 5
7 )+ϵ ≪ x

5
7+ϵT

473
420+ϵ . (3.9)

Combining (3.2), (3.8), and (3.9), we obtain∑
n≤x

λ f (n)2λg(n)2 = xP2,2(log x) + O
( x1+ϵ

T
+ x

5
7+ϵT

473
420+ϵ

)
.

Recall that T = δx
120
893 with 1 < δ < 2, Thus, we get the required result.

Utilizing the similar method of λ f (n)2λg(n)2, we can get the results of λ f (n)2λg(n)4, λ f (n)4λg(n)2,
λ f (n)4λg(n)4, λ f (n)4λg(n)6, and λ f (n)6λg(n)4 easily.

Case 2. When l = m = 6, l ≥ 8, or m ≥ 8, we have

Gl,m(s) =
r∏

n1=0

r̄∏
n2=0

L(syml−2n1 f × symm−2n2g, s)
(
( l

n1
)−( l

n1−1)
)(
(m

n2
)−( m

n2−1)
)
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=ζ(s)((
l
r)−( l

r−1))((m
r̄)−( m

r̄−1))L(sym2 f , s)((
l

r−1)−( l
r−2))((m

r̄)−( m
r̄−1))L(sym2g, s)((

l
r)−( l

r−1))(( m
r̄−1)−( m

r̄−2))

×

r−2∏
n1=0

L(syml−2n1 f , s)
(
( l

n1
)−( l

n1−1)
)
((m

r̄)−( m
r̄−1))

r̄−2∏
n2=0

L(symm−2n2g, s)((
l
r)−( l

r−1))
(
(m

n2
)−( m

n2−1)
)

×

r−1∏
n1=0

r̄−1∏
n2=0

L(syml−2n1 f × symm−2n2g, s)
(
( l

n1
)−( l

n1−1)
)(
(m

n2
)−( m

n2−1)
)
,

where l = 2r, m = 2r̄.
Taking U = xθ

−1
2,2,r,r̄ in (2.4), there must exist a T ∗ ∈ (U, 2U) such that

ζ(σ + iT ∗) ≪ϵ exp(C(log log U)2) ≪ Uϵ .

Suppose that T = δU with 1 < δ < 2. Now, we choose

σ0 =
5
7
, T = T ∗ = δU = δxθ

−1
2,2,r,r̄ ,

where

θ2,2,r,r̄ =
13

(
l

r−1

)(
m

r̄−1

)
42rr̄

+
18

(
l

r−2

)(
m

r̄−1

)
5r̄(r − 1)

+
18

(
l

r−1

)(
m

r̄−2

)
5r(r̄ − 1)

+

r−2∑
n1=1

(l−2n1+1)2

r̄n1

(
l

n1−1

)(
m

r̄−1

)
+ (l + 1)1

r̄

(
m

r̄−1

)
2

+

r̄−2∑
n2=1

(m−2n2+1)2

rn2

(
l

r−1

)(
m

n2−1

)
(m + 1)1

r

(
l

r−1

)
2

+
(l + 1)(m + 1)

2
+

r−1∑
n1=1

(l−2n1+1)2(m+1)
n1

(
l

n1−1

)
2

+

r̄−1∑
n2=1

(m−2n2+1)2(l+1)
n2

(
m

n2−1

)
2

+

r−1∑
n1=1

r̄−1∑
n2=1

(l−2n1+1)2(m−2n2+1)2

n1n2

(
l

n1−1

)(
m

n2−1

)
2

−
3

14

in (3.2). Then,

R
h
l,m ≪

1
T

∫ 1+ϵ

5
7

(T
δ

) 1
rr̄ ( l

r−1)( m
r̄−1)ϵT (θ2,2,r,r̄− 13

42rr̄ ( l
r−1)( m

r̄−1)+ 3
14 )(1−σ)xσdσ

≪ T (θ2,2,r,r̄− 13
42rr̄ ( l

r−1)( m
r̄−1)+ 3

14 )−1+ϵ
∫ 1+ϵ

5
7

(
x

T (θ2,2,r,r̄− 13
42rr̄ ( l

r−1)( m
r̄−1)+ 3

14 )

)σ
dσ

≪
x1+ϵ

T
+ x

5
7+ϵT

2
7 (θ2,2,r,r̄− 13

42rr̄ ( l
r−1)( m

r̄−1)+ 3
14 )−1+ϵ .

(3.10)

Applying the Hölder’s inequality, we obtain

R
v
l,m ≪x

5
7+ϵ sup

1≤T1≤T

1
T1

∫ 2T1

T1

∣∣∣∣∣Gl,m(
5
7
+ iτ)

∣∣∣∣∣ dτ
≪x

5
7+ϵ sup

1≤T1≤T

1
T1

(∫ 2T1

T1

|ζ(
5
7
+ iτ)|12dτ

)
T (θ2,2,r,r̄− 7

2 )(1− 5
7 )+ϵ

1

≪x
5
7+ϵT

2
7 θ2,2,r,r̄−1+ϵ .

(3.11)
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Combining (3.2), (3.10), and (3.11), we obtain∑
n≤x

λ f (n)lλg(n)m = xP1(log x) + O
(

x1+ϵ

T
+ x

5
7+ϵT

2
7 θ2,2,r,r̄−1+ϵ

)
.

Recall that T = δxθ
−1
2,2,r,r̄ with 1 < δ < 2. Thus, we get the required result.

3.2.2. Odd l and m

From (3.7), we have

Gl,m(s) =
t∏

n1=0

t̄∏
n2=0

L(syml−2n1 f × symm−2n2g, s)
(
( l

n1
)−( l

n1−1)
)(
(m

n2
)−( m

n2−1)
)

=

t∏
n1=1

L(syml−2n1 f × symmg, s)
(
( l

n1
)−( l

n1−1)
) t̄∏

n2=1

L(syml f × symm−2n2g, s)
(
(m

n2
)−( m

n2−1)
)

× L(syml f × symmg)
t∏

n1=1

t̄∏
n2=1

L(syml−2n1 f × symm−2n2g, s)
(
( l

n1
)−( l

n1−1)
)(
(m

n2
)−( m

n2−1)
)
,

where l = 2t + 1, m = 2t̄ + 1. Then,

R
h
l,m ≪

1
T

∫ 1+ϵ

1
2

T θ1,1,t,t̄(1−σ)xσdσ ≪ T θ1,1,t,t̄−1
∫ 1+ϵ

1
2

( x
T θ1,1,t,t̄

)σ
dσ

≪
x1+ϵ

T
+ x

1
2+ϵT

1
2 θ1,1,t,t̄−1,

(3.12)

where

θ1,1,t,t̄ =
(l + 1)(m + 1)

2
+

t∑
n1=1

(l−2n1+1)2(m+1)
n1

(
l

n1−1

)
2

+

t̄∑
n2=1

(m−2n2+1)2(l+1)
n2

(
m

n2−1

)
2

+

t∑
n1=1

t̄∑
n2=1

(l−2n1+1)2(m−2n2+1)2

n1n2

(
l

n1−1

)(
m

n2−1

)
2

.

Applying the Cauchy inequality and (2.9), we obtain

R
v
l,m ≪x

1
2+ϵ sup

1≤T1≤T

1
T1

∫ 2T1

T1

∣∣∣∣∣Gl,m(
1
2
+ iτ)

∣∣∣∣∣ dτ
≪x

1
2+ϵ sup

1≤T1≤T

1
T1

∫ 2T1

T1

∣∣∣L(syml−2 f × symmg, s)
∣∣∣2 dτ × T (θ1,1,t,t̄−2 (l−1)(m+1)

2 )(1− 1
2 )+ϵ

1

≪x
1
2+ϵT

1
2 θ1,1,t,t̄−1+ϵ .

(3.13)

Combining (3.2), (3.12), and (3.13), we obtain∑
n≤x

λ f (n)lλg(n)m = xPl,m(log x) + O
(

x1+ϵ

T
+ x

1
2+ϵT

1
2 θ1,1,t,t̄−1+ϵ

)
.

By taking a fixed T = xθ
−1
1,1,t,t̄ , we obtain the result.
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3.2.3. Odd l and even m

When 2 ∤ l, 2 | m, because (2.5) cannot be used directly when the power of L( f , s) is less than 4, we
need to think about this case separately.

Case 1. When l = 3,m = 2, according to Proposition 3.1 and taking σ0 =
5
8 , we have

G3,2(s) = L( f , s)2L( f × sym2g, s)2L(sym3 f , s)L(sym3 f × sym2g, s).

Then, we get

R
h
3,2 =

1
T

∫ 1+ϵ

5
8

∣∣∣∣L( f , s)2L( f × sym2g, s)2
L(sym3 f , s)L(sym3 f × sym2g, s)

∣∣∣∣xσdσ

≪
1
T

∫ 1+ϵ

5
8

T (2× 2
3+2× 27

10+
4
2+

12
2 )(1−σ)+ϵxσdσ

≪T
206
15 +ϵ

∫ 1+ϵ

5
8

(
x

T
221
15

)σ
dσ

≪
x1+ϵ

T
+ x

5
8+ϵT

181
40 +ϵ .

(3.14)

In order to estimate Rv
3,2, we apply the Cauchy-Schwarz inequality to obtain

R
v
3,2≪x

5
8+ϵ sup

1≤T1≤T

1
T1

∫ 2T1

T1

∣∣∣∣∣G3,2(
5
8
+ iτ)

∣∣∣∣∣dτ
≪x

5
8+ϵ sup

1≤T1≤T

1
T1

T1
(2× 27

10+
12
2 )(1− 5

8 )+ϵ
(∫ 2T1

T1

∣∣∣∣∣L(sym f ,
5
8
+ iτ)

∣∣∣∣∣4dτ
) 1

2

×

(∫ 2T1

T1

∣∣∣∣∣L(sym3 f ,
5
8
+ iτ)

∣∣∣∣∣2dτ
) 1

2

≪x
5
8+ϵ sup

1≤T1≤T

1
T1

T1
(2× 27

10+
12
2 )(1− 5

8 )+ϵT1
1
2+ϵT1

1
2×4×(1− 5

8 )+ϵ

≪x
5
8+ϵT

181
40 +ϵ .

(3.15)

Combining (3.14) and (3.15) with (3.2) and T = x
15

221 , we get the required result.

Case 2. When l is odd, m is even, and l , 3 or m , 2. From (3.7), we have

Gl,m(s) =
t∏

n1=0

r̄∏
n2=0

L(syml−2n1 f × symm−2n2g, s)
(
( l

n1
)−( l

n1−1)
)(
(m

n2
)−( m

n2−1)
)

=L( f , s)((
l
t)−( l

t−1))((m
r̄)−( m

r̄−1))
t−1∏

n1=0

r̄∏
n2=0

L(syml−2n1 f × symm−2n2g, s)
(
( l

n1
)−( l

n1−1)
)(
(m

n2
)−( m

n2−1)
)

× L( f × sym2g, s)((
l
t)−( l

t−1))(( m
r̄−1)−( m

r̄−2))
r̄−2∏

n2=0

L( f × symm−2n2g, s)((
l
t)−( l

t−1))
(
(m

n2
)−( m

n2−1)
)
,
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where l = 2t + 1, m = 2r̄. By taking σ0 =
5
8 , then

R
h
l,m ≪

1
T

∫ 1+ϵ

5
8

T θ1,2,t,r̄(1−σ)xσdσ ≪ T θ1,2,t,r̄−1
∫ 1+ϵ

5
8

( x
T θ1,2,t,r̄

)σ
dσ

≪
x1+ϵ

T
+ x

5
8+ϵT

3
8 θ1,2,t,r̄−1,

(3.16)

where

θ1,2,t,r̄ =
4
(

l
t−1

)(
m

r̄−1

)
3tr̄

+
81

(
l

t−1

)(
m

r̄−2

)
5t(r̄ − 1)

+

4(m+1)
t

(
l

t−1

)
+

r̄−2∑
n2=1

4(m−2n2+1)2

tn2

(
l

t−1

)(
m

n2−1

)
2

+
(l + 1)(m + 1)

2
+

t−1∑
n1=1

(l−2n1+1)2(m+1)
n1

(
l

n1−1

)
2

+

r̄∑
n2=1

(m−2n2+1)2(l+1)
n2

(
m

n2−1

)
2

+

t−1∑
n1=1

r̄∑
n2=1

(l−2n1+1)2(m−2n2+1)2

n1n2

(
l

n1−1

)(
m

n2−1

)
2

.

Applying the Hölder inequality, we obtain

R
v
l,m ≪x

5
8+ϵ sup

1⩽T1⩽T

1
T1

∫ 2T1

T1

∣∣∣∣∣Gl,m(
5
8
+ iτ)

∣∣∣∣∣ dτ
≪x

5
8+ϵ sup

1⩽T1⩽T

1
T1

(∫ 2T1

T1

∣∣∣∣∣L( f ,
5
8
+ iτ)

∣∣∣∣∣4 dτ
)

T (θ1,2,t,r̄−4× 2
3 )(1− 5

8 )+ϵ
1

≪x
5
8+ϵT

5
8 θ1,2,t,r̄−1+ϵ .

(3.17)

Combining (3.16) and (3.17) with (3.2) and T = xθ
−1
1,2,t,r̄ , we get the required result.

3.2.4. Oven l and odd m

The proof of 2 | l, 2 ∤ m is similar to 2 ∤ l, 2 | m, so it can be estimated in a similar way. In order to
avoid repetition, we shall not prove it verbatim here.

4. Proof of Theorem 1.3

In order to prove Theorem 1.3, we state the following result of Meher and Murty [19, Theorem 1.1]
to detect sign changes:

Lemma 4.1. Suppose a sequence of real numbers {a(n)} satisfies

(1) a(n) = O(xα+ϵ),

(2)
∑
n≤x

a(n) = O(xβ+ϵ),

(3)
∑
n≤x

a(n)2 = cx + O(xγ+ϵ),
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where α, β, γ, and c are positive real constants. If α+ β < 1, then for any r with max{α+ β, γ} < r < 1,
the sequence {a(n)} has at least one sign change for n ∈ (x, x + xr] for sufficiently large x. Moreover,
the number of sign changes of {a(n)} for n ≤ x is≫ x1−r .

(i) Let f ∈ H∗k . From Wu [3, Theorem 2] and Huang [6, Theorem 1], we have∑
n≤x

λ f (n) ≪ x
1
3 (log x)−0.118 and

∑
n≤x

λ f (n)2 = Cx + O
(
x

3
5−

1
560+ϵ

)
. (4.1)

Combining (1.1) and (4.1) in Lemma 4.1, we know that α = 0, β = 1/3, γ = 67/112, which means

max{α + β, γ} = 67/112 < 1.

(ii) Let f , g ∈ H∗k . In 2014, Lü [15] proved that∑
n≤x

λ f (n)λg(n) ≪ x
3
5 log x−

2
3 (1− 8

3π ).

From Theorem 1.1, we improve the error term for the sharp-cut sum (1.5) with l = m = 2 from
O(x13/15+ϵ) to O(x773/893+ϵ). With Lemma 4.1, we obtain α = 0, β = 3/5, γ = 773/893, which means

max{α + β, γ} = 773/893 < 1.

Thus, we finish the proof of Theorem 1.3.

5. Conclusions

In this paper, we study the distribution of Fourier coefficients of holomorphic cusp forms. Let λ f (n)
be the nth normalized Fourier coefficient of a holomorphic cusp form f for the full modular group.
Combining the classical analytic method with property of some primitive automorphic L-functions,
we establish asymptotic formulae for high power sums of Fourier coefficients of cusp forms. As an
application, we also use a general criteria to detect the signs of λ f (n) and λ f (n)λg(n), and obtain some
quantitative results for the number of sign changes for n ≤ x. We are able to improve or extend previous
results.
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8. G. S. Lü, The sixth and eighth moments of Fourier coefficiehts of cusp forms, J. Number Theory,
129 (2009), 2790–2800. https://doi.org/10.1016/j.jnt.2009.01.019
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