Citation: D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh. Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus[J]. AIMS Mathematics, 2020, 5(2): 1400-1410. doi: 10.3934/math.2020096
[1] | R. Agarwal, Kritika, S. D. Purohit, A mathematical fractional model with non-singular kernel for thrombin receptor activation in calcium signalling, Math. Meth. Appl. Sci., 42 (2019), 7160-7171. doi: 10.1002/mma.5822 |
[2] | A. Alaria, A. M. Khan, D. L. Suthar, et al., Application of fractional operators in Modelling for charge carrier transport in amorphous semiconductor with multiple trapping, Int. J. Appl. Comput. Math., 5 (2019), doi.org/10.1007/s40819-019-0750-8. |
[3] | J. Choi, P. Agarwal, S. Mathur, et al., Certain new integral formulas involving the generalized Bessel functions, Bull. Korean Math. Soc., 51 (2014), 995-1003. doi: 10.4134/BKMS.2014.51.4.995 |
[4] | R. Ed. Hilfer, Applications of fractional calculus in physics; World Scientific Publishing Company: Singapore, Singapore; Hackensack, NJ, USA; London, UK; Hong Kong, China, 2000. |
[5] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers. Amsterdam, the Netherland; London, UK; New York, NY, USA, 2006. |
[6] | D. Kumar, J. Singh, S. D. Purohit, et al., A hybrid analytic algorithm for nonlinear wave-like equations, Math. Model. Nat. Phenom., 14 (2019), 304. |
[7] | O. I. Marichev, Handbook of integral transform and Higher transcendental functions, Ellis, Harwood, chichester (John Wiley and Sons), New York, 1983. |
[8] | E. Mittal, R. M. Pandey, S. Joshi, On extension of Mittag-Leffler function, Appl. Appl. Math., 11 (2016), 307-316. |
[9] | F. W. L. Olver, D. W. Lozier, R. F. Boisvert, et al., NIST handbook of mathematical functions, Cambridge University Press, 2010. |
[10] | M. A. Özarslan, B. Yılmaz, The extended Mittag-Leffler function and its properties, J. Inequalities Appl., (2014), 85. |
[11] | R. K. Parmar, A class of extended Mittag-Leffler functions and their properties related to integral transforms and fractional calculus, Mathematics, 3 (2015), 1069-1082. doi: 10.3390/math3041069 |
[12] | R. K. Parmar, P. Chopra, R. B. Paris, On an extension of extended beta and hypergeometric functions, J. Classical Anal., 11 (2017), 91-106. |
[13] | R. S. Pathak, Certain convergence theorems and asymptotic properties of a generalization of Lommel and Maitland transform, Proc. Nat. Acad. Sci. India Sect. A., 36 (1966), 81-86. |
[14] | S. D. Purohit, S. L. Kalla, D. L. Suthar, Fractional integral operators and the multiindex MittagLeffler functions, Sci. Ser. A Math. Sci. (N.S.), 21 (2011), 87-96. |
[15] | S. D. Purohit, D. L. Suthar, S. L. Kalla, Marichev-Saigo-Maeda fractional integration operators of the Bessel functions, Matematiche (Catania), 67 (2012), 12-32. |
[16] | S. D. Purohit, F. Ucar, An application of q-Sumudu transform for fractional q-kinetic equation, Turkish J. Math., 42 (2018), 726-734. |
[17] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications; Gordon and Breach: Yverdon, Switzerland, 1993. |
[18] | J. B. Sharma, K. K. Sharma, A. Atangana, et al., Hybrid watermarking algorithm using finite radon and fractional Fourier transform, Fundam. Inform., 151 (2017), 523-543. doi: 10.3233/FI-2017-1508 |
[19] | I. N. Sneddon, The use of integral transform, New Delhi, Tata McGraw Hill, 1979. |
[20] | H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985. |
[21] | D. L. Suthar, H. Amsalu, Certain integrals associated with the generalized Bessel-Maitland function, Appl. Appl. Math., 12 (2017), 1002-1016. |
[22] | D. L. Suthar, H. Habenom, Integrals involving generalized Bessel-Maitland function, J. Sci. Arts, 37 (2016), 357-362. |
[23] | D. L. Suthar, S. D. Purohit, R. K. Parmar, Generalized fractional calculus of the multiindex Bessel function, Math. Nat. Sci., 1 (2017), 26-32. |
[24] | D. L. Suthar, G. V. Reddy, N. Abeye, Integral formulas involving product of Srivastava's polynomial and generalized Bessel Maitland functions, Int. J. Sci. Res., 11 (2017), 343-351. |
[25] | D. L. Suthar, T. Tsagye, Riemann-Liouville fractional integrals and differential formula involving Multiindex Bessel-function, Math. Sci. Lett., 6 (2017), 1-5. doi: 10.18576/msl/060101 |
[26] | G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library edition, Cambridge University Press, 1965, Reprinted 1996. |
[27] | X. J. Yang, New rheological problems involving general fractional derivatives with nonsingular power-law kernels, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 19 (2018), 45-52. |
[28] | X. J. Yang, General Fractional Derivatives: Theory, Methods and Applications. Chapman and Hall/CRC, 2019. |
[29] | X. J. Yang, Y. Y. Feng, C. Cattani, et al., Fundamental solutions of anomalous diffusion equations with the decay exponential kernel, Math. Methods Appl. Sci., 42 (2019), 4054-4060. doi: 10.1002/mma.5634 |
[30] | X. J. Yang, F. Gao, Y. Ju, et al., Fundamental solutions of the general fractional-order diffusion equations, Math. Methods Appl. Sci., 41 (2018), 9312-9320. doi: 10.1002/mma.5341 |
[31] | X. J. Yang, F. Gao, Y. Ju, General fractional derivatives with applications in viscoelasticity. Academic Press, 2020. |
[32] | X. J. Yang, F. Gao, J. A. T. Machado, et al., A new fractional derivative involving the normalized sinc function without singular kernel, Eur. Phys. J. Spec. Top., 226 (2017), 3567-3575. doi: 10.1140/epjst/e2018-00020-2 |
[33] | X. J. Yang, F. Gao, H. M. Srivastava, New rheological models within local fractional derivative, Rom. Rep. Phys, 69 (2017), 113. |
[34] | X. J. Yang, A. A. Mahmoud, C. Carlo, A new general fractional-order derivative with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer, Ther. Sci., 23 (2019), 1677-1681. doi: 10.2298/TSCI180320239Y |
[35] | X. J. Yang, H. M. Srivastava, J. A. T. Machado, A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753-756. doi: 10.2298/TSCI151224222Y |