Research article

Analysis of a basic SEIRA model with Atangana-Baleanu derivative

  • Received: 23 October 2019 Accepted: 09 January 2020 Published: 20 January 2020
  • MSC : 34A08, 34A34, 47H10

  • Since computer worms have very acute and negative effects on computer systems, they are considered as one of the malicious bodies that induce serious issues in these structures. This is why numerous efforts have been given for finding different ways to avert the unwanted occurrences which stem from computer worms' harmful behavior to this day. Our motivation is to make use of AtanganaBaleanu fractional derivative with Mittag-Leffler kernel which has latterly been brought into operation, and thus closely examine the basic SEIRA (susceptible-exposed-infectious-removed-antidotal) model associated with computer worms. To that end, we first prove the conditions that show the existence and uniqueness properties of the solutions for the fractional order model benefiting from fixed point theory. By using various values belonging to the fractional order, we also acquired different numerical simulations emphasizing that the aforementioned derivative is quite impactful.

    Citation: Sümeyra Uçar. Analysis of a basic SEIRA model with Atangana-Baleanu derivative[J]. AIMS Mathematics, 2020, 5(2): 1411-1424. doi: 10.3934/math.2020097

    Related Papers:

  • Since computer worms have very acute and negative effects on computer systems, they are considered as one of the malicious bodies that induce serious issues in these structures. This is why numerous efforts have been given for finding different ways to avert the unwanted occurrences which stem from computer worms' harmful behavior to this day. Our motivation is to make use of AtanganaBaleanu fractional derivative with Mittag-Leffler kernel which has latterly been brought into operation, and thus closely examine the basic SEIRA (susceptible-exposed-infectious-removed-antidotal) model associated with computer worms. To that end, we first prove the conditions that show the existence and uniqueness properties of the solutions for the fractional order model benefiting from fixed point theory. By using various values belonging to the fractional order, we also acquired different numerical simulations emphasizing that the aforementioned derivative is quite impactful.


    加载中


    [1] X. Han, Q. Tan, Dynamical behavior of computer virus on internet, Appl. Math. Comput., 217 (2010), 2520-2526.
    [2] J. R. C. Piqueira, A. A. Vasconcelos, C. E. C. J. Gabriel, et al. Dynamic models for computer viruses, Comput. Secur., 27 (2008), 355-359. doi: 10.1016/j.cose.2008.07.006
    [3] O. A. Toutonji, S. M. Yoo, M. Park, Stability analysis of VEISV propagation modeling for network worm attack, Appl. Math. Model., 36 (2012), 2751-2761. doi: 10.1016/j.apm.2011.09.058
    [4] D. Moore, V. Paxson, S. Savage, et al. Inside the slammer worm, IEEE Symposium on Security and Privacy, 1 (2003), 33-39.
    [5] S. H. Sellke, N. B. Shroff, S. Bagchi, Modeling and automated containment of worms, IEEE T. Depend. Secure, 5 (2008), 71-86. doi: 10.1109/TDSC.2007.70230
    [6] J. Kim, S. Radhakrishnan, J. Jang, Cost optimization in SIS model of worm infection, ETRI Journal, 28 (2006), 692-695. doi: 10.4218/etrij.06.0206.0026
    [7] J. R. C. Piqueira, B. F. Navarro, L. H. A. Monteiro, Epidemiological models applied to viruses in computer networks, J. Comput. Sci., 1 (2005), 31-34. doi: 10.3844/jcssp.2005.31.34
    [8] J. R. C. Piqueira, F. B. Cesar, Dynamical models for computer viruses propagation, Math. Prob. Eng., 217 (2008), 1-11.
    [9] J. R. C. Piqueira, V. O. Araujo, A modified epidemiological model for computer viruses, Appl. Math. Comput., 213 (2009), 355-360.
    [10] J. C. Wierman, D. J. Marchette, Modeling computer virus prevalence with a susceptible-infected susceptible model with reintroduction, Comput. Stat. Data An., 45 (2004), 3-23. doi: 10.1016/S0167-9473(03)00113-0
    [11] X. Z. Li, L. L. Zhou, Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate, Chaos Solitons & Fractals, 40 (2009), 874-884.
    [12] G. Li, J. Zhen, Global stability of an SEI epidemic model with general contact rate, Chaos, Solitons & Fractals, 23 (2005), 997-1004.
    [13] Y. Jin, W. Wang, S. Xiao, An SIRS model with a nonlinear incidence rate, Chaos, Solitons & Fractals, 34 (2007), 1482-1497.
    [14] S. Tyagi, S. Abbas, M. Hafayed, Global Mittag-Leffler stability of complex valued fractionalorder neural network with discrete and distributed delays, Rendiconti Del Circolo Matematico Di Palermo, 65 (2016), 485-505. doi: 10.1007/s12215-016-0248-8
    [15] N. Özdemir, D. Karadeniz, B. B. Iskender, Fractional optimal control problem of a distributed system in cylindrical coordinates, Phys. Lett. A, 373 (2009), 221-226. doi: 10.1016/j.physleta.2008.11.019
    [16] F. Evirgen, N. Özdemir, Multistage adomian decomposition method for solving NLP problems over a nonlinear fractional dynamical system, J. Comput. Nonlinear Dyn., 6 (2011), 21003.
    [17] F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 6 (2016), 75-83.
    [18] Z. Hammouch, T. Mekkaoui, Circuit design and simulation for the fractional-order chaotic behavior in a new dynamical system, Complex & Intelligent Systems, 4 (2018), 251-260.
    [19] E. Bonyah, A. Atangana, M. A. Khan, Modeling the spread of computer virus via Caputo fractional derivative and the beta derivative, Asia Pacific Journal on Computational Engineering, 4 (2017), 1-15. doi: 10.1186/s40540-016-0019-1
    [20] N. Özdemir, M. Yavuz, Numerical solution of fractional Black-Scholes equation by using the multivariate pade approximation, Acta Phys. Pol. A., 132 (2017), 1050-1053. doi: 10.12693/APhysPolA.132.1050
    [21] E. Uçar, N. Özdemir, E. Altun, Fractional order model of immune cells influenced by cancer cells, Math. Model. Nat. Pheno., 14 (2019), 308.
    [22] K. B. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, New York and London: Academic Press, 1974.
    [23] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [24] D. Baleanu, K. Diethelm, E. Scalas, et al. Fractional calculus models and numerical methods, World Scientific, 2012.
    [25] M. Caputo, M. Fabrizio, A New definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85.
    [26] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and applications to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A
    [27] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89 (2016), 447-454.
    [28] A. Atangana, B. S. T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439-4453. doi: 10.3390/e17064439
    [29] A. Atangana, I. Koca, A On the new fractional derivative and application to nonlinear Baggs and Freedman model, J. Nonlinear Sci. Appl., 9 (2016), 2467-2480. doi: 10.22436/jnsa.009.05.46
    [30] J. Singh, D. Kumar, Z. Hammouch, et al. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504-515.
    [31] M. Yavuz, N. Özdemir, H. M. Baskonus, Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel, Eur. Phys. J. Plus, 133 (2018), 215.
    [32] K. M. Saad, S. Deniz, D. Baleanu, On a new modified fractional analysis of Nagumo equation, Int. J. Biomath, 12 (2019), 1950034.
    [33] N. Bildik, S. Deniz, A new fractional analysis on the polluted lakes system, Chaos, Solitons & Fractals, 122 (2019), 17-24.
    [34] S. Uçar, Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives, Discrete Continuous Dyn. Syst. Ser. S, in press.
    [35] V. F. Morales-Delgadoa, J. F. Gomez-Aguilar, M. A. Taneco-Hernandez, et al. Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel, J. Nonlinear Sci. Appl., 11 (2018), 994-1014. doi: 10.22436/jnsa.011.08.06
    [36] E. Bonyah, J. F. Gomez-Aguilar, A. Adu, Stability analysis and optimal control of a fractional human African trypanosomiasis model, Chaos, Solitons & Fractals, 117 (2018), 150-160.
    [37] N. A. Asif, Z. Hammouch, M. B. Riaz, et al. Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, Eur. Phys. J. Plus, 133 (2018), 272.
    [38] I. Koca, Analysis of rubella disease model with non-local and non-singular fractional derivatives, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 8 (2018), 17-25.
    [39] D. Avcı A. Yetim, Analytical solutions to the advection-diffusion equation with the AtanganaBaleanu derivative over a finite domain, J. BAUN Inst. Sci. Technol., 20 (2018), 382-395.
    [40] S. Uçar, E. Uçar, N. Özdemir, et al. Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos, Solitons & Fractals, 118 (2019), 300-306.
    [41] D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simulat., 59 (2018), 444-462. doi: 10.1016/j.cnsns.2017.12.003
    [42] A. Fernandez, D. Baleanu, H. M. Srivastava, Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions, Commun. Nonlinear Sci. Numer. Simulat., 67 (2019), 517-527. doi: 10.1016/j.cnsns.2018.07.035
    [43] I. Ahn, H. C. Oh, J. Park, Investigation of the C-SEIRA model for controlling malicious code infection in computer networks, Appl. Math. Model., 39 (2015), 4121-4133. doi: 10.1016/j.apm.2014.12.038
    [44] T. Mekkaoui, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 444.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4001) PDF downloads(675) Cited by(18)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog