Citation: Sümeyra Uçar. Analysis of a basic SEIRA model with Atangana-Baleanu derivative[J]. AIMS Mathematics, 2020, 5(2): 1411-1424. doi: 10.3934/math.2020097
[1] | X. Han, Q. Tan, Dynamical behavior of computer virus on internet, Appl. Math. Comput., 217 (2010), 2520-2526. |
[2] | J. R. C. Piqueira, A. A. Vasconcelos, C. E. C. J. Gabriel, et al. Dynamic models for computer viruses, Comput. Secur., 27 (2008), 355-359. doi: 10.1016/j.cose.2008.07.006 |
[3] | O. A. Toutonji, S. M. Yoo, M. Park, Stability analysis of VEISV propagation modeling for network worm attack, Appl. Math. Model., 36 (2012), 2751-2761. doi: 10.1016/j.apm.2011.09.058 |
[4] | D. Moore, V. Paxson, S. Savage, et al. Inside the slammer worm, IEEE Symposium on Security and Privacy, 1 (2003), 33-39. |
[5] | S. H. Sellke, N. B. Shroff, S. Bagchi, Modeling and automated containment of worms, IEEE T. Depend. Secure, 5 (2008), 71-86. doi: 10.1109/TDSC.2007.70230 |
[6] | J. Kim, S. Radhakrishnan, J. Jang, Cost optimization in SIS model of worm infection, ETRI Journal, 28 (2006), 692-695. doi: 10.4218/etrij.06.0206.0026 |
[7] | J. R. C. Piqueira, B. F. Navarro, L. H. A. Monteiro, Epidemiological models applied to viruses in computer networks, J. Comput. Sci., 1 (2005), 31-34. doi: 10.3844/jcssp.2005.31.34 |
[8] | J. R. C. Piqueira, F. B. Cesar, Dynamical models for computer viruses propagation, Math. Prob. Eng., 217 (2008), 1-11. |
[9] | J. R. C. Piqueira, V. O. Araujo, A modified epidemiological model for computer viruses, Appl. Math. Comput., 213 (2009), 355-360. |
[10] | J. C. Wierman, D. J. Marchette, Modeling computer virus prevalence with a susceptible-infected susceptible model with reintroduction, Comput. Stat. Data An., 45 (2004), 3-23. doi: 10.1016/S0167-9473(03)00113-0 |
[11] | X. Z. Li, L. L. Zhou, Global stability of an SEIR epidemic model with vertical transmission and saturating contact rate, Chaos Solitons & Fractals, 40 (2009), 874-884. |
[12] | G. Li, J. Zhen, Global stability of an SEI epidemic model with general contact rate, Chaos, Solitons & Fractals, 23 (2005), 997-1004. |
[13] | Y. Jin, W. Wang, S. Xiao, An SIRS model with a nonlinear incidence rate, Chaos, Solitons & Fractals, 34 (2007), 1482-1497. |
[14] | S. Tyagi, S. Abbas, M. Hafayed, Global Mittag-Leffler stability of complex valued fractionalorder neural network with discrete and distributed delays, Rendiconti Del Circolo Matematico Di Palermo, 65 (2016), 485-505. doi: 10.1007/s12215-016-0248-8 |
[15] | N. Özdemir, D. Karadeniz, B. B. Iskender, Fractional optimal control problem of a distributed system in cylindrical coordinates, Phys. Lett. A, 373 (2009), 221-226. doi: 10.1016/j.physleta.2008.11.019 |
[16] | F. Evirgen, N. Özdemir, Multistage adomian decomposition method for solving NLP problems over a nonlinear fractional dynamical system, J. Comput. Nonlinear Dyn., 6 (2011), 21003. |
[17] | F. Evirgen, Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 6 (2016), 75-83. |
[18] | Z. Hammouch, T. Mekkaoui, Circuit design and simulation for the fractional-order chaotic behavior in a new dynamical system, Complex & Intelligent Systems, 4 (2018), 251-260. |
[19] | E. Bonyah, A. Atangana, M. A. Khan, Modeling the spread of computer virus via Caputo fractional derivative and the beta derivative, Asia Pacific Journal on Computational Engineering, 4 (2017), 1-15. doi: 10.1186/s40540-016-0019-1 |
[20] | N. Özdemir, M. Yavuz, Numerical solution of fractional Black-Scholes equation by using the multivariate pade approximation, Acta Phys. Pol. A., 132 (2017), 1050-1053. doi: 10.12693/APhysPolA.132.1050 |
[21] | E. Uçar, N. Özdemir, E. Altun, Fractional order model of immune cells influenced by cancer cells, Math. Model. Nat. Pheno., 14 (2019), 308. |
[22] | K. B. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, New York and London: Academic Press, 1974. |
[23] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[24] | D. Baleanu, K. Diethelm, E. Scalas, et al. Fractional calculus models and numerical methods, World Scientific, 2012. |
[25] | M. Caputo, M. Fabrizio, A New definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. |
[26] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and applications to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A |
[27] | A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons & Fractals, 89 (2016), 447-454. |
[28] | A. Atangana, B. S. T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439-4453. doi: 10.3390/e17064439 |
[29] | A. Atangana, I. Koca, A On the new fractional derivative and application to nonlinear Baggs and Freedman model, J. Nonlinear Sci. Appl., 9 (2016), 2467-2480. doi: 10.22436/jnsa.009.05.46 |
[30] | J. Singh, D. Kumar, Z. Hammouch, et al. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504-515. |
[31] | M. Yavuz, N. Özdemir, H. M. Baskonus, Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel, Eur. Phys. J. Plus, 133 (2018), 215. |
[32] | K. M. Saad, S. Deniz, D. Baleanu, On a new modified fractional analysis of Nagumo equation, Int. J. Biomath, 12 (2019), 1950034. |
[33] | N. Bildik, S. Deniz, A new fractional analysis on the polluted lakes system, Chaos, Solitons & Fractals, 122 (2019), 17-24. |
[34] | S. Uçar, Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives, Discrete Continuous Dyn. Syst. Ser. S, in press. |
[35] | V. F. Morales-Delgadoa, J. F. Gomez-Aguilar, M. A. Taneco-Hernandez, et al. Mathematical modeling of the smoking dynamics using fractional differential equations with local and nonlocal kernel, J. Nonlinear Sci. Appl., 11 (2018), 994-1014. doi: 10.22436/jnsa.011.08.06 |
[36] | E. Bonyah, J. F. Gomez-Aguilar, A. Adu, Stability analysis and optimal control of a fractional human African trypanosomiasis model, Chaos, Solitons & Fractals, 117 (2018), 150-160. |
[37] | N. A. Asif, Z. Hammouch, M. B. Riaz, et al. Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, Eur. Phys. J. Plus, 133 (2018), 272. |
[38] | I. Koca, Analysis of rubella disease model with non-local and non-singular fractional derivatives, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 8 (2018), 17-25. |
[39] | D. Avcı A. Yetim, Analytical solutions to the advection-diffusion equation with the AtanganaBaleanu derivative over a finite domain, J. BAUN Inst. Sci. Technol., 20 (2018), 382-395. |
[40] | S. Uçar, E. Uçar, N. Özdemir, et al. Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos, Solitons & Fractals, 118 (2019), 300-306. |
[41] | D. Baleanu, A. Fernandez, On some new properties of fractional derivatives with Mittag-Leffler kernel, Commun. Nonlinear Sci. Numer. Simulat., 59 (2018), 444-462. doi: 10.1016/j.cnsns.2017.12.003 |
[42] | A. Fernandez, D. Baleanu, H. M. Srivastava, Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions, Commun. Nonlinear Sci. Numer. Simulat., 67 (2019), 517-527. doi: 10.1016/j.cnsns.2018.07.035 |
[43] | I. Ahn, H. C. Oh, J. Park, Investigation of the C-SEIRA model for controlling malicious code infection in computer networks, Appl. Math. Model., 39 (2015), 4121-4133. doi: 10.1016/j.apm.2014.12.038 |
[44] | T. Mekkaoui, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 444. |