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Abstract: Since computer worms have very acute and negative effects on computer systems, they are
considered as one of the malicious bodies that induce serious issues in these structures. This is why
numerous efforts have been given for finding different ways to avert the unwanted occurrences which
stem from computer worms’ harmful behavior to this day. Our motivation is to make use of Atangana-
Baleanu fractional derivative with Mittag-Leffler kernel which has latterly been brought into operation,
and thus closely examine the basic SEIRA (susceptible-exposed-infectious-removed-antidotal) model
associated with computer worms. To that end, we first prove the conditions that show the existence
and uniqueness properties of the solutions for the fractional order model benefiting from fixed point
theory. By using various values belonging to the fractional order, we also acquired different numerical
simulations emphasizing that the aforementioned derivative is quite impactful.
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1. Introduction

With the improvements in cyber world and the increasing use of internet, computer worms have
become a critical problem. Worms are one of the malicious objects that attack through using the
system vulnerability with the ability to copy itself from one machine to other machines. Worms have
also infectivity, destructibility, invisibility and latent, therefore eliminating them is a serious problem.
Because each malicious action gives rise to weakness in computer to gain access for several purposes,
such as stealing password, credit card information, email address, deleting files or even anything on
hard disk, causing unnecessary network traffic and so on, network experts consider worms as the
extreme security risk on computers [1–3]. Morris, SQL Slammer and Code Red are considered as
some of the well-known worms infecting a large number of computers and causing mass economic
loss [3–5].
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On account of the high similarity between computer worms propagation and spread of biological
virus, the actions of malicious objects in the network environment can be investigated using classical
epidemiological models [6–8]. Considering biological models such as SIR, SEIR, SIRS, there are a lot
of models related to computer virus and worms in the literature [9–13].

Because of the hereditary and memory properties of fractional derivatives not owned by integer
order derivatives, fractional operators have received increasing interest by several directions in the
modeling of biological process, neural networks, engineering, physics, finance and many more [14–
21]. Although there are many benefits of the classical fractional Riemann Liouville (RL) and Caputo
derivatives to characterize real systems as more reliable, the singularity by virtue of their power kernels
which leads to many significant computational hardships [22–24]. To eliminate these problems, at first,
Caputo and Fabrizio [25] presented a new non-singular fractional derivative with exponential kernel
which is called Caputo-Fabrizio (CF) derivative. Inspired by the definition of CF derivative, Atangana
and Baleanu [26] have introduced two types of non-singular derivatives in terms of RL and Caputo
named as Atangana-Baleanu (AB) derivatives with Mittag-Leffler kernel function. These operators
have been interpreted as a filter regulator besides being a derivative [27]. Many applications of the
new operators arise in various real-world problems. Atangana and Alkahtani [28] have obtained a
detailed analysis for the existence and uniqueness of solutions of the Keller-Segel model involving CF
derivative. Atangana and Koca [29] have investigated Baggs and Freedman model having exponential
kernel. By means of Banach fixed point theory, Singh et al. [30] examined the epidemiological model
for computer viruses equipped with CF derivative. Fractional partial differential equations containing
AB derivative have been solved by Yavuz et al. [31]. Saad et al. [32] have been studied Naguma model
with CF and AB derivative. The classical model of polluted lake system have been modified with the
concept of fractional differentiation by Bildik et al. [33]. Uçar [34] has examined a smoking model as
affected by determination and education related activities by means of CF and AB derivatives. Some
other outstanding studies have been made in [35–42].

In the present work, regarding the great importance of AB fractional derivative we aim to promote
the application of the AB derivative with Mittag-Leffler kernel to the basic SEIRA model and prove
the detailed existence and uniqueness conditions of their solution through the fixed point theory. After
that, we interpret the effect of this fractional derivative supporting some numerical simulations and also
take into consideration the description memory and hereditary properties of fractional order models.
Finally, the concluding remarks are discussed.

2. Basic definitions and preliminaries

In this section, we briefly give some basic definitions and properties that are useful in the next
chapter.

Definition 2.1. Let g ∈ H1 (a, b), a < b be a function and η ∈ [0, 1]. The Atangana-Baleanu derivative
in Caputo type of order η of g is given by [26]

ABC
a Dη

t
[
g (t)

]
=

F (η)
1 − η

t∫
a

g′ (x) Eη

[
−η

(t − x)η

1 − η

]
dx (2.1)

where F (η) is a normalization function with F (0) = F (1) = 1 and Eη is the Mittag-Leffler function.
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Definition 2.2. Let g ∈ H1 (a, b), a < b be a function and η ∈ [0, 1]. The Atangana-Baleanu derivative
in Riemann-Liouville type of order η of g is given by [26]:

ABR
a Dη

t
[
g (t)

]
=

F (η)
1 − η

d
dt

t∫
a

g (x) Eη

[
−η

(t − x)η

1 − η

]
dx. (2.2)

Definition 2.3. The fractional integral is defined by [26]:

AB
a Iηt

[
g (t)

]
=

1 − η
F (η)

g (t) +
η

F (η) Γ (η)

t∫
a

g (λ) (t − λ)η−1 dλ. (2.3)

Theorem 2.1. For a continuous function g on [a, b]. The inequality given below holds on [a, b] [26]:∥∥∥ABR
0 Dη

t
[
g (t)

]∥∥∥ < F (η)
1 − η

‖g (t)‖ , (2.4)

where ‖g (t)‖ = max
a≤t≤b
|g (t)| .

Theorem 2.2. [26] The Atangana-Baleanu derivative in Caputo and RL type satisfy Lipschitz
condition: ∥∥∥ABC

0 Dη
t
[
g (t)

]
−ABC

0 Dη
t [h (t)]

∥∥∥ ≤ H ‖g (t) − h (t)‖ (2.5)

and ∥∥∥ABR
0 Dη

t
[
g (t)

]
−ABR

0 Dη
t [h (t)]

∥∥∥ ≤ H ‖g (t) − h (t)‖ . (2.6)

3. Model description

Here, we focus on the basic SEIRA (susceptible-exposed-infectious-removed-antidotal) model
described in [43]:

dS (t)
dt

=
−bS (t) I (t)

N
− dsS (t) + µA (t) ,

dE (t)
dt

=
bS (t) I (t)

N
− τE (t) − dEE (t) ,

dI (t)
dt

= τE (t) − dI I (t) − θI (t) ,

dR (t)
dt

= θI (t) − ϕR (t) ,

dA (t)
dt

= dS S (t) + dEE (t) + dI I (t) + ϕR (t) − µA (t) , (3.1)

with the initial conditions S (0) = l1, E (0) = l2, I (0) = l3, R (0) = l4, A (0) = l5. This basic SEIRA
model divides N computer hosts in total into five separate sections. S (t) stands for the number of
computer hosts susceptible to malicious object attack at time t; the number of computer hosts exposed
to malicious object attack however are not yet actively infectious at time t is denoted by E (t); the
number of computer hosts actively infectious at time t is shown by I (t); the number of computer hosts
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removed from the network owing to forced isolation as a consequence of system treatment effort or
death from infection is described by R (t); and finally A (t) stands for the number of computer hosts
restored (from the removed state) and equipped with modern anti-malicious software. The model
parameters are as follows: The ratio of contact is b; the ratio of state transition from E to I is τ; the
ratio of state transition from S to A is ds; the ratio of state transition from E to A is dE; the ratio of state
transition from I to A is dI; the ratio of state transition from A to S is µ; the ratio of death as a result of
being infected by malicious objects is θ; and the ratio of restoration from R to A is ϕ.

Let us modify this model by replacing the integer order time derivative by the fractional time
derivative:

ABC
0 Dη

t (S (t)) =
−bS (t) I (t)

N
− dsS (t) + µA (t) ,

ABC
0 Dη

t (E (t)) =
bS (t) I (t)

N
− τE (t) − dEE (t) ,

ABC
0 Dη

t (I (t)) = τE (t) − dI I (t) − θI (t) ,
ABC
0 Dη

t (R (t)) = θI (t) − ϕR (t) ,
ABC
0 Dη

t (A (t)) = dS S (t) + dEE (t) + dI I (t) + ϕR (t) − µA (t) . (3.2)

with the initial conditions S (0) = l1, E (0) = l2, I (0) = l3,R (0) = l4, A (0) = l5, where ABC
0 Dη

t is
Atangana-Baleanu derivative in Caputo type and η ∈ [0, 1].

4. Existence and uniqueness analysis

Providing the solution of nonlinear equations is known to be a hard subject in differential calculus.
The fractional order model under consideration is nonlinear, it can be impossible to obtain the exact
solution of such systems. To that end, we investigate the existence and uniqueness problems of the
model given by (3.2). To achieve this, we will take advantage of fixed point theory.

LetA = C (N) ×C (N) ×C (N) ×C (N) ×C (N) and C (N) be a Banach space of continuous R→ R
valued functions on the interval N with the norm

‖(S , E, I,R, A)‖ = ‖S ‖ + ‖E‖ + ‖I‖ + ‖R‖ + ‖A‖ ,

where ‖S ‖ =sup {|S (t)| : t ∈ N}, ‖E‖ = sup {|E (t)| : t ∈ N}, ‖I‖ = sup {|I (t)| : t ∈ N},
‖R‖=sup {|R (t)| : t ∈ N}, ‖A‖ = sup {|A (t)| : t ∈ N} . Now, we rearrange the model (3.2) in the
following easy manner:

ABC
0 Dη

t (S (t)) = H1 (t, S ) ,
ABC
0 Dη

t (E (t)) = H2 (t, E) ,
ABC
0 Dη

t (I (t)) = H3 (t, I) ,
ABC
0 Dη

t (R (t)) = H4 (t,R) ,
ABC
0 Dη

t (A (t)) = H5 (t, A) . (4.1)

Applying fractional integral to both sides of the Eq. (4.1) and by the fundamental theorem of fractional
calculus, the above can be rewritten as:
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S (t) − S (0) =
1 − η
F (η)

H1 (t, S ) +
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 H1 (λ, S ) dλ,

E (t) − E (0) =
1 − η
F (η)

H2 (t, E) +
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 H2 (λ, E) dλ,

I (t) − I (0) =
1 − η
F (η)

H3 (t, I) +
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 H3 (λ, I) dλ,

R (t) − R (0) =
1 − η
F (η)

H4 (t,R) +
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 H4 (λ,R) dλ,

A (t) − A (0) =
1 − η
F (η)

H5 (t, A) +
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 H5 (λ, A) dλ. (4.2)

Theorem 4.1. If the following inequality holds

0 ≤
b
N

c + dS < 1,

then the kernel H1 satisfies the Lipschitz condition and contraction.

Proof. Let S and S 1 be two functions, then we have

‖H1 (t, S ) − H1 (t, S 1)‖

=

∥∥∥∥∥− b
N

S (t) I (t) − dS S (t) +
b
N

S 1 (t) I (t) + dS S 1 (t)
∥∥∥∥∥

≤

(
b
N
‖I (t)‖ + dS

)
‖S (t) − S 1 (t)‖

≤ δ1 ‖S (t) − S 1 (t)‖ . (4.3)

where δ1 = b
N c + dS and ‖S (t)‖ ≤ a, ‖E (t)‖ ≤ b, ‖I (t)‖ ≤ c, ‖R (t)‖ ≤ d, ‖A (t)‖ ≤ e.

‖H1 (t, S ) − H1 (t, S 1)‖ ≤ δ1 ‖S (t) − S 1 (t)‖ . (4.4)

Hence, the Lipschitz condition satisfied for H1 and 0 ≤ b
N c + dS < 1 implies H1 is also contraction. �

Similarly, it can be shown that the Lipschitz condition and contraction fulfilled by the other kernels.
Consider the system (4.2) in the following iterative formula:

S n (t) =
1 − η
F (η)

H1 (t, S n−1) +
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 H1 (λ, S n−1) dλ,
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En (t) =
1 − η
F (η)

H2 (t, En−1) +
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 H2 (λ, En−1) dλ,

In (t) =
1 − η
F (η)

H3 (t, In−1) +
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 H3 (λ, In−1) dλ,

Rn (t) =
1 − η
F (η)

H4 (t,Rn−1) +
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 H4 (λ,Rn−1) dλ,

An (t) =
1 − η
F (η)

H5 (t, An−1) +
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 H5 (λ, An−1) dλ, (4.5)

where the initial conditions are

S 0 (t) = S (0) , E0 (t) = E (0) , I0 (t) = I (0) ,R0 (t) = R (0) , A0 (t) = A (0) .

The difference between the successive terms take of the following expressions:

$1n (t) = S n (t) − S n−1 (t) =
1 − η
F (η)

[H1 (t, S n−1) − H1 (t, S n−2)]

+
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 [H1 (λ, S n−1) − H1 (λ, S n−2)] dλ,

$2n (t) = En (t) − En−1 (t) =
1 − η
F (η)

[H2 (t, En−1) − H2 (t, En−2)]

+
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 [H2 (λ, En−1) − H2 (λ, En−2)] dλ,

$3n (t) = In (t) − In−1 (t) =
1 − η
F (η)

[H3 (t, In−1) − H3 (t, In−2)]

+
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 [H3 (λ, In−1) − H3 (λ, In−2)] dλ,

$4n (t) = Rn (t) − Rn−1 (t) =
1 − η
F (η)

[H4 (t,Rn−1) − H4 (t,Rn−2)]

+
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 [H4 (λ,Rn−1) − H4 (λ,Rn−2)] dλ,
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$5n (t) = An (t) − An−1 (t) =
1 − η
F (η)

[H5 (t, An−1) − H5 (t, An−2)]

+
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 [H5 (λ, An−1) − H5 (λ, An−2)] dλ. (4.6)

In the view of above calculations, it is clear that

S n (t) =

n∑
k=1

$1k (t) ,

En (t) =

n∑
k=1

$2k (t) ,

In (t) =

n∑
k=1

$3k (t) ,

Rn (t) =

n∑
k=1

$4k (t) ,

An (t) =

n∑
k=1

$5k (t) . (4.7)

Implementing the norm to both sides of the Eq. (4.6) and then triangular identity, we get

‖$1n (t)‖ = ‖S n (t) − S n−1 (t)‖

≤
1 − η
F (η)

‖[H1 (t, S n−1) − H1 (t, S n−2)]‖

+
η

F (η) Γ (η)

∥∥∥∥∥∥∥∥
t∫
0

(t − λ)η−1 [H1 (λ, S n−1) − H1 (λ, S n−2)] dλ

∥∥∥∥∥∥∥∥ (4.8)

Because the kernel H1 fulfills the Lipschitz condition proved in Eq. (4.4), we find

‖$1n (t)‖ = ‖S n (t) − S n−1 (t)‖

≤
1 − η
F (η)

δ1 ‖S n−1 − S n−2‖ +
η

F (η) Γ (η)
δ1

t∫
0

(t − λ)η−1
‖S n−1 − S n−2‖ dλ (4.9)

and we have

‖$1n (t)‖ ≤
1 − η
F (η)

δ1

∥∥∥$1(n−1) (t)
∥∥∥ +

η

F (η) Γ (η)
δ1

t∫
0

(t − λ)η−1
∥∥∥$1(n−1) (λ)

∥∥∥ dλ (4.10)

Analogously, for the rest equations of the model, we get the followings:
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‖$2n (t)‖ ≤
1 − η
F (η)

δ2

∥∥∥$2(n−1) (t)
∥∥∥ +

η

F (η) Γ (η)
δ2

t∫
0

(t − λ)η−1
∥∥∥$2(n−1) (λ)

∥∥∥ dλ,

‖$3n (t)‖ ≤
1 − η
F (η)

δ3

∥∥∥$3(n−1) (t)
∥∥∥ +

η

F (η) Γ (η)
δ3

t∫
0

(t − λ)η−1
∥∥∥$3(n−1) (λ)

∥∥∥ dλ,

‖$4n (t)‖ ≤
1 − η
F (η)

δ4

∥∥∥$4(n−1) (t)
∥∥∥ +

η

F (η) Γ (η)
δ4

t∫
0

(t − λ)η−1
∥∥∥$4(n−1) (λ)

∥∥∥ dλ,

‖$5n (t)‖ ≤
1 − η
F (η)

δ5

∥∥∥$5(n−1) (t)
∥∥∥ +

η

F (η) Γ (η)
δ5

t∫
0

(t − λ)η−1
∥∥∥$5(n−1) (λ)

∥∥∥ dλ. (4.11)

In the light of the results in hand, one can state the theorem given below.

Theorem 4.2. The fractional model given as (3.2) has a solution, if we can find t0 satisfying the
equation

1 − η
F (η)

δi +
tη0

F (η) Γ (η)
δi < 1 for i = 1, 2, 3, 4, 5. (4.12)

Proof. We know that S (t), E (t), I (t), R (t), A (t) are bounded functions and carry out Lipschitz
condition. Having regard the Eqs. (4.10) and (4.11), we get the succeeding relations:

‖$1n (t)‖ ≤ ‖S n (0)‖
[
1 − η
F (η)

δ1 +
tη

F (η) Γ (η)
δ1

]n

,

‖$2n (t)‖ ≤ ‖En (0)‖
[
1 − η
F (η)

δ2 +
tη

F (η) Γ (η)
δ2

]n

,

‖$3n (t)‖ ≤ ‖In (0)‖
[
1 − η
F (η)

δ3 +
tη

F (η) Γ (η)
δ3

]n

,

‖$4n (t)‖ ≤ ‖Rn (0)‖
[
1 − η
F (η)

δ4 +
tη

F (η) Γ (η)
δ4

]n

,

‖$5n (t)‖ ≤ ‖An (0)‖
[
1 − η
F (η)

δ5 +
tη

F (η) Γ (η)
δ5

]n

. (4.13)

Thus, the existence and continuity of the aforementioned solutions are proved. Now, our goal is to
show that the above functions are solutions of Eq. (3.2), suppose that

S (t) − S (0) = S n (t) − υ1n (t) ,
E (t) − E (0) = En (t) − υ2n (t) ,
I (t) − I (0) = In (t) − υ3n (t) ,
R (t) − R (0) = Rn (t) − υ4n (t) ,
A (t) − A (0) = An (t) − υ5n (t) . (4.14)
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Next, we have

‖υ1n (t)‖ =

∥∥∥∥∥1 − η
F (η)

[H1 (t, S ) − H1 (t, S n−1)]

+
η

F (η) Γ (η)

t∫
0

(t − λ)η−1 [H1 (λ, S ) − H1 (λ, S n−1)] dλ

∥∥∥∥∥∥∥∥
≤

1 − η
F (η)

‖H1 (t, S ) − H1 (t, S n−1)‖

+
η

F (η) Γ (η)

t∫
0

(t − λ)η−1
‖H1 (λ, S ) − H1 (λ, S n−1) dλ‖

≤
1 − η
F (η)

δ1 ‖S − S n−1‖ +
tη

F (η) Γ (η)
δ1 ‖S − S n−1‖ . (4.15)

By continuing this method recursively, it yields at t0

‖υ1n (t)‖ ≤
(
1 − η
F (η)

+
tη0

F (η) Γ (η)

)n+1

δ
n+1
1 a. (4.16)

As n tends to ∞ taking the limit both sides, we have ‖υ1n (t)‖ → 0. In an analogous way, it can be
shown ‖υ2n (t)‖ → 0, ‖υ3n (t)‖ → 0, ‖υ4n (t)‖ → 0 and ‖υ5n (t)‖ → 0. �

It is another crucial subject to demonstrate the uniqueness of the solutions of the Eq. (3.2). Let
S 1 (t), E1 (t), I1 (t), R1 (t) and A1 (t) be another solutions of the model (3.2), we find

S (t) − S 1 (t) =
1 − η
F (η)

[H1 (t, S ) − H1 (t, S 1)] +
η

F (η) Γ (η)

×

t∫
0

(t − λ)η−1 [H1 (λ, S ) − H1 (λ, S 1)] dλ (4.17)

Taking the norm to the Eq. (4.17), and then since the kernel satisfies the Lipschitz condition, we
obtain

‖S (t) − S 1 (t)‖ ≤
1 − η
F (η)

δ1 ‖S (t) − S 1 (t)‖

+
tη

F (η) Γ (η)
δ1 ‖S (t) − S 1 (t)‖ (4.18)

This leads to

‖S (t) − S 1 (t)‖
(
1 −

1 − η
F (η)

δ1 −
tη

F (η) Γ (η)
δ1

)
≤ 0. (4.19)

AIMS Mathematics Volume 5, Issue 2, 1411–1424.



1420

If the following inequality holds(
1 −

1 − η
F (η)

δ1 −
tη

F (η) Γ (η)
δ1

)
> 0, (4.20)

then ‖S (t) − S 1 (t)‖ = 0. So we have
S (t) = S 1 (t) .

Using the same attitude, we obtain the followings and complete the proof

E (t) = E1 (t) , I (t) = I1 (t) ,R (t) = R1 (t) , A (t) = A1 (t) .

5. Numerical simulations and discussion

The purpose of this section is to observe what happens when fractional order η changes in the
model (3.2). For this reason, several numerical simulations of this model will be given using the
numerical technique which has been recently developed by Toufik and Atangana [44]. We use the
initial conditions (70, 10, 10, 0, 10), respectively, and use the parameters b = 0.5, τ = 0.3, dS = 0.0001,
dE = 0.0001, dI = 0.0005, µ = 0.0001, θ = 0.005, ϕ = 0.1 given in [43]. Figure 1 shows that the model
scenario is exposed to the critical attitude where the system is attacked by infectious populations I (t)
for a long duration. In the Figure 2, it can be observed that as the fractional order η declines, the number
of susceptible populations S (t) rises whereas the number of infectious populations I (t) reduces with
η = 0.5 and 0.1. It can also clearly be seen that when a considerable increase and decrease occurs
in S (t) and I (t) respectively, almost no change in observed E (t), R (t) and A (t). On Figure 3, the
behavior of the model components are displayed according to different values of the fractional order η.
In addition, from Figure 3 it is clearly visible that as η goes up, the number of susceptible populations
S (t) decreases while the number of infectious populations I (t) increases.
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Figure 1. Numerical simulations for the Eq. (3.2) at η = 0.9.
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Figure 2. Numerical simulations for the Eq. (3.2) at η = 0.5 and η = 0.1, respectively.
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Figure 3. The behavior of the fractional basic SEIRA model components for distinct values
of η.
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6. Concluding remarks

Since malicious objects such as computer virus, worms etc. are major threats in the present days, a
better understanding malicious objects is of critical significance for the computer security. In this study,
the concept of ABC derivative serving a memory effect assists us for a comprehensive examination of
the basic SEIRA model about computer worms. First, we remodel classical basic SEIRA model with
the ABC fractional derivative. Second, the existence and uniqueness conditions for the fractional
model are proved by means of the fixed point theory. Some numerical simulations are depicted with
different values of η and briefly interpreted. Since in computer world, it is of utmost importance to
decrease the number of infectious populations I(t), we show in our fractional model that effectiveness
of I(t) declines as the fractional order η decreases, which is a great advantage of the AB derivative with
hereditary properties. Consequently, in order to reveal the hidden properties of real-world phenomenas,
we can conclude that the prospects of ABC fractional derivative ensure more suitable models of these
phenomenas.
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