Research article

Semilinear viscous Moore-Gibson-Thompson equation with the derivative-type nonlinearity: Global existence versus blow-up

  • Received: 29 August 2021 Accepted: 30 September 2021 Published: 11 October 2021
  • MSC : 35A01, 35B40, 35B44, 35G25

  • In this paper, we study global existence and blow-up of solutions to the viscous Moore-Gibson-Thompson (MGT) equation with the nonlinearity of derivative-type $ |u_t|^p $. We demonstrate global existence of small data solutions if $ p > 1+4/n $ ($ n\leq 6 $) or $ p\geq 2-2/n $ ($ n\geq 7 $), and blow-up of nontrivial weak solutions if $ 1 < p\leq 1+1/n $. Deeply, we provide estimates of solutions to the nonlinear problem. These results complete the recent works for semilinear MGT equations by [4].

    Citation: Jincheng Shi, Yan Zhang, Zihan Cai, Yan Liu. Semilinear viscous Moore-Gibson-Thompson equation with the derivative-type nonlinearity: Global existence versus blow-up[J]. AIMS Mathematics, 2022, 7(1): 247-257. doi: 10.3934/math.2022015

    Related Papers:

  • In this paper, we study global existence and blow-up of solutions to the viscous Moore-Gibson-Thompson (MGT) equation with the nonlinearity of derivative-type $ |u_t|^p $. We demonstrate global existence of small data solutions if $ p > 1+4/n $ ($ n\leq 6 $) or $ p\geq 2-2/n $ ($ n\geq 7 $), and blow-up of nontrivial weak solutions if $ 1 < p\leq 1+1/n $. Deeply, we provide estimates of solutions to the nonlinear problem. These results complete the recent works for semilinear MGT equations by [4].



    加载中


    [1] O. V. Abramov, High-intensity ultrasonics: Theory and industrial applications, CRC Press, 1998. doi: 10.1201/9780203751954.
    [2] W. H. Chen, On the Cauchy problem for the Jordan-Moore-Gibson-Thompson equation in the dissipative case, 2021, arXiv: 2105.06112.
    [3] W. H. Chen, On the Cauchy problem for acoustic waves in hereditary fluids: Decay properties and inviscid limits, 2021, arXiv: 2106.06194
    [4] W. H. Chen, R. Ikehata, The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case, J. Differ. Equ., 292 (2021), 176–219.
    [5] W. H. Chen, A. Palmieri, Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part, Z. Angew. Math. Phys., 70 (2019), 67. doi: 10.1007/s00033-019-1112-4. doi: 10.1007/s00033-019-1112-4
    [6] W. H. Chen, A. Palmieri, Nonexistence of global solutions for the semilinear Moore–Gibson–Thompson equation in the conservative case, DCDS, 40 (2020), 5513–5540. doi: 10.3934/dcds.2020236. doi: 10.3934/dcds.2020236
    [7] W. H. Chen, A. Z. Fino, Blow-up of solutions to semilinear strongly damped wave equations with different nonlinear terms in an exterior domain, Math. Method. Appl. Sci., 44 (2021), 6787–6807. doi: 10.1002/mma.7223. doi: 10.1002/mma.7223
    [8] J. A. Conejero, C. Lizama, F. Rodenas, Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation. Appl. Math. Inf. Sci., 9 (2015), 2233–2238.
    [9] T. Dreyer, W. Krauss, E. Bauer, R. E. Riedlinger, Investigations of compact self focusing transducers using stacked piezoelectric elements for strong sound pulses in therapy, 2000 IEEE Ultrasonics Symposium. Proceedings, 2 (2000), 1239–1242. doi: 10.1109/ULTSYM.2000.921547. doi: 10.1109/ULTSYM.2000.921547
    [10] H. Hajaiej, L. Molinet, T. Ozawa, B. X. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, 2011, arXiv: 1004.4287.
    [11] P. M. Jordan, Second-sound phenomena in inviscid, thermally relaxing gases, DCDS-B, 19 (2014), 2189–2205. doi: 10.3934/dcdsb.2014.19.2189. doi: 10.3934/dcdsb.2014.19.2189
    [12] B. Kaltenbacher, I. Lasiecka, R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybern., 40 (2011), 971–988.
    [13] M. Kaltenbacher, H. Landes, J. Hoffelner, R. Simkovics, Use of modern simulation for industrial applications of high power ultrasonics, 2002 IEEE Ultrasonics Symposium, Munich, Germany: IEEE, 2002, doi: 10.1109/ULTSYM.2002.1193491.
    [14] R. Marchand, T. McDevitt, R. Triggiani, An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: Structural decomposition, spectral analysis, exponential stability, Math. Method. Appl. Sci., 35 (2012), 1896–1929. doi: 10.1002/mma.1576. doi: 10.1002/mma.1576
    [15] A. Palmieri, Global existence of solutions for semi-linear wave equation with scale-invariant damping and mass in exponentially weighted spaces, J. Math. Anal. Appl., 461 (2018), 1215–1240. doi: 10.1016/j.jmaa.2018.01.063. doi: 10.1016/j.jmaa.2018.01.063
    [16] M. Pellicer, B. Said-Houari, Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Appl. Math. Optim., 80 (2019), 447–478. doi: 10.1007/s00245-017-9471-8. doi: 10.1007/s00245-017-9471-8
    [17] Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case, Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, 333 (2001), 109–114. doi: 10.1016/S0764-4442(01)01999-1. doi: 10.1016/S0764-4442(01)01999-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2257) PDF downloads(110) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog