In this paper, we presented Tauberian type results that intricately link the quasi-asymptotic behavior of both even and odd distributions to the corresponding asymptotic properties of their fractional Fourier cosine and sine transforms. We also obtained a structural theorem of Abelian type for the quasi-asymptotic boundedness of even (resp. odd) distributions with respect to their fractional Fourier cosine transform (FrFCT) (resp. fractional Fourier sine transform (FrFST)). In both cases, we quantified the scaling asymptotic properties of distributions by asymptotic comparisons with Karamata regularly varying functions.
Citation: Snježana Maksimović, Sanja Atanasova, Zoran D. Mitrović, Salma Haque, Nabil Mlaiki. Abelian and Tauberian results for the fractional Fourier cosine (sine) transform[J]. AIMS Mathematics, 2024, 9(5): 12225-12238. doi: 10.3934/math.2024597
In this paper, we presented Tauberian type results that intricately link the quasi-asymptotic behavior of both even and odd distributions to the corresponding asymptotic properties of their fractional Fourier cosine and sine transforms. We also obtained a structural theorem of Abelian type for the quasi-asymptotic boundedness of even (resp. odd) distributions with respect to their fractional Fourier cosine transform (FrFCT) (resp. fractional Fourier sine transform (FrFST)). In both cases, we quantified the scaling asymptotic properties of distributions by asymptotic comparisons with Karamata regularly varying functions.
[1] | N. Abbas, S. Nadeem, A. Sial, W. Shatanawi, Numerical analysis of generalized Fourier's and Fick's laws for micropolar Carreaufluid over a vertical stretching Riga sheet, Zamm Z. Angew. Math. Me., 103 (2023), e202100311. https://doi.org/10.1002/zamm.202100311 doi: 10.1002/zamm.202100311 |
[2] | T. Alieva, M. J. Bastiaans, Fractional cosine and sine transforms in relation to the fractional Fourier and Hartley transforms, Seventh International Symposium on Signal Processing and Its Applications, Paris, France, 2003,561–564. https://doi.org/10.1109/ISSPA.2003.1224765 |
[3] | L. B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE T. Signal Proces., 42 (1994), 3084–3091. https://doi.org/10.1109/78.330368 doi: 10.1109/78.330368 |
[4] | S. Atanasova, S. Maksimović, S. Pilipović, Abelian and Tauberian results for the fractional Fourier and short-time Fourier transforms of distributions, Integr. Transf. Spec. F., 35 (2024), 1–16. https://doi.org/10.1080/10652469.2023.2255367 doi: 10.1080/10652469.2023.2255367 |
[5] | P. K. Banerji, S. K. Al-Omari, L. Debnath, Tempered distributional sine (cosine) transform, Integr. Transf. Spec. F., 17 (2006), 759–768. https://doi.org/10.1080/10652460600856534 doi: 10.1080/10652460600856534 |
[6] | H. Hudzik, P. Jain, R. Kumar, On generalized fractional cosine and sine transforms, Georgian Math. J., 25 (2018), 259–270. https://doi.org/10.1515/gmj-2018-0030 doi: 10.1515/gmj-2018-0030 |
[7] | G. Jumarie, Fourier's transform of fractional order via Mittag-Leffler function and modified Riemann-Liouville derivative, J. Appl. Math. Inform., 26 (2008), 1101–1121. https://doi.org/10.1016/j.aml.2009.05.011 doi: 10.1016/j.aml.2009.05.011 |
[8] | S. Kostadinova, S. Pilipović, K. Saneva, J. Vindas, The ridglet transform of distribution and quasi-asymptotic behavior of distributions, In: Pseudo-differential operators and generalized functions, Cham: Birkhäuser, 2015,185–197. https://doi.org/10.1007/978-3-319-14618-8_13 |
[9] | A. W. Lohmann, D. Mendlovic, Z. Zalevsky, R. G. Dorsch, Some important fractional for signal processing, Opt. Commun., 125 (1996), 18–20. https://doi.org/10.1016/0030-4018(95)00748-2 doi: 10.1016/0030-4018(95)00748-2 |
[10] | A. R. Maddukuri, Fractional Fourier transform and scaling problem in signals and images, Master Thesis, DITE, Sweden, 2018. |
[11] | A. C. McBride, F. H. Kerr, On Namias's fractional Fourier trans-forms, IMA J. Appl. Math., 39 (1987), 159–175. https://doi.org/10.1093/imamat/39.2.159 doi: 10.1093/imamat/39.2.159 |
[12] | E. O. Milton, Fourier transforms of odd and even tempered distributions, Pac. J. Math., 50 (1974), 563–572. http://doi.org/10.2140/pjm.1974.50.563 doi: 10.2140/pjm.1974.50.563 |
[13] | V. Namias, The fractional order Fourier transform and its application to quantum mechanics, IMA J. Appl. Math., 25 (1980), 241–265. https://doi.org/10.1093/imamat/25.3.241 doi: 10.1093/imamat/25.3.241 |
[14] | H. M. Ozaktas, Z. Zalevsky, M. A. Kutay, The fractional Fourier transform with applications in optics and signal processing, New York: Wiley, 2001. |
[15] | R. S. Pathak, A. Prasad, M. Kumar, Fractional Fourier transform of tempered distributions and generalized pseudo differential operator, J. Pseudo-Differ. Oper. Appl., 3 (2012), 239–254. https://doi.org/10.1007/s11868-012-0047-8 doi: 10.1007/s11868-012-0047-8 |
[16] | S. C. Pei, M. H. Yeh, Thediscrete fractional cosine and sine transforms, IEEE T. Signal Proces., 49 (2001), 1198–1207. https://doi.org/10.1109/78.923302 doi: 10.1109/78.923302 |
[17] | S. Pilipović, B. Stanković, A. Takači, Asymptotic behavior and Stieltjes transformation of distribution, Teubner-Texte zur Mathematik 11, Leipzig, 1990. |
[18] | A. Prasad, M. K. Singh, Pseudo-differential operators involving fractional Fourier cosine (sine) transform, Filomat, 31 (2017), 1791–1801. https://doi.org/10.2298/FIL1706791P doi: 10.2298/FIL1706791P |
[19] | S. Pilipović, J. Vindas, Multidimensional Tauberian theorems for vector-valued distributions, Publications de l'Institut Mathematique, 95 (2014), 1–28. https://doi.org/10.2298/PIM1409001P doi: 10.2298/PIM1409001P |
[20] | F. A. Shah, W. Z. Lone, K. S. Nisar, T. Abdeljawad, On the class of uncertainty inequalities for the coupled fractional Fourier transform, J. Inequal. Appl., 2022 (2022), 133. https://doi.org/10.1186/s13660-022-02873-2 doi: 10.1186/s13660-022-02873-2 |
[21] | W. Shatanawi, N. Abbas, T. A. M. Shatnawi, F. Hasan, Heat and mass transfer of generalized fourier and Fick's law for second-grade fluid flow at slendering vertical Riga sheet, Heliyon, 9 (2023), E14250, https://doi.org/10.1016/j.heliyon.2023.e14250 doi: 10.1016/j.heliyon.2023.e14250 |
[22] | J. Vindas, S. Pilipović, Structural theorems for quasi-asymptotics of distributions at the origin, Math. Nachr., 282 (2009), 1584–1599. https://doi.org/10.1002/mana.200710090 doi: 10.1002/mana.200710090 |
[23] | J. Vindas, Structural theorems for quasi-asymptotics of distributions at infinity, Publications de l'Institut Mathematique, 84 (2008), 159–174. https://doi.org/10.2298/PIM0898159V doi: 10.2298/PIM0898159V |
[24] | J. Vindas, The structure of quasi-asymptotics of Schwartz distributions, Banach Center Publications, 88 (2010), 297–314. https://doi.org/10.4064/bc88-0-24 doi: 10.4064/bc88-0-24 |
[25] | V. S. Vladimirov, Y. N. Drozinov, B. I. Zavialov, Tauberian theorems for generalized functions, Dordrecht: Springer, 1988. https://doi.org/10.1007/978-94-009-2831-2 |
[26] | N. Wiener, Hermitian polynomials and Fourier analysis, J. Math. Phys., 8 (1929), 70–73. https://doi.org/10.1002/sapm19298170 doi: 10.1002/sapm19298170 |
[27] | B. I. Zavialov, "Quasi-asymptotic" behavior of generalized functions, and self-simulation of electromagnetic form factors, Theor. Math. Phys., 19 (1974), 426–432. https://doi.org/10.1007/BF01035942 doi: 10.1007/BF01035942 |