Research article

On global well-posedness to 3D Navier-Stokes-Landau-Lifshitz equations

  • Received: 09 July 2020 Accepted: 13 August 2020 Published: 19 August 2020
  • MSC : 35Q35, 35D35, 76D05

  • In this paper, we prove the global well-posedness of solutions for the Cauchy problem of three-dimensional incompressible Navier-Stokes-Landau-Lifshitz equations under the condition that $\|u_0\|_{H^{\frac12}}+\|\nabla d_0\|_{H^{\frac12+\varepsilon}}$ ($\varepsilon>0)$ is sufficiently small. This result can be seen as an improvement of the previous paper [20].

    Citation: Ning Duan, Xiaopeng Zhao. On global well-posedness to 3D Navier-Stokes-Landau-Lifshitz equations[J]. AIMS Mathematics, 2020, 5(6): 6457-6463. doi: 10.3934/math.2020416

    Related Papers:

  • In this paper, we prove the global well-posedness of solutions for the Cauchy problem of three-dimensional incompressible Navier-Stokes-Landau-Lifshitz equations under the condition that $\|u_0\|_{H^{\frac12}}+\|\nabla d_0\|_{H^{\frac12+\varepsilon}}$ ($\varepsilon>0)$ is sufficiently small. This result can be seen as an improvement of the previous paper [20].


    加载中


    [1] F. Alouges, A. Soyeur, On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness, Nonlinear Anal., 18 (1992), 1071-1084. doi: 10.1016/0362-546X(92)90196-L
    [2] B. Guo, M. Hong, The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps, Calc. Var. Patial. Dif., 1 (1993), 311-334. doi: 10.1007/BF01191298
    [3] W. E, X. Wang, Numerical methods for the Landau-Lifshitz equation, SIAM J. Numer. Anal., 38 (2000), 1647-1665. doi: 10.1137/S0036142999352199
    [4] J. Fan, H. Gao, B. Guo, Regularity criteria for the Navier-Stokes-Landau-Lifshitz system, J. Math. Anal. Appl. 363 (2010), 29-37. doi: 10.1016/j.jmaa.2009.07.047
    [5] J. Fan, Y. Zhou, Uniform local well-posedness for an Ericksen-Leslie's density-dependent parabolic-hyperbolic liquid crystals model, Appl. Math. Lett., 74 (2017), 79-84. doi: 10.1016/j.aml.2017.04.012
    [6] E. Feireisl, E. Rocca, G. Schimperna, et al. On a hyperbolic system arising in liquid crystals modeling, J. Hyperbol. Differ. Eq., 15 (2018), 15-35. doi: 10.1142/S0219891618500029
    [7] D. Golovaty, P. Sternberg, R. Venkatraman, A Ginzburg-Landau-type problem for highly anisotropic nematic liquid crystals, SIAM J. Math. Anal., 51 (2019), 276-320. doi: 10.1137/18M1178360
    [8] B. Guo, F. Liu, Weak and smooth solutions to incompressible Navier-Stokes-Landau-LifshitzMaxwell equations, Front. Math. China, 14 (2019), 1133-1161. doi: 10.1007/s11464-019-0800-x
    [9] T. Kato, Strong Lp-solutions of the Navier-Stokes equations in $\mathbb{R}^m$ with applications to weak solutions, Math. Z., 187 (1984), 471-480. doi: 10.1007/BF01174182
    [10] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704
    [11] H. Koch, D. Tataru, Well-posedness for the Navier-Stokes equations, Adv. Math., 157 (2001), 22- 35.
    [12] F. Lin, J. Lin, C. Wang, Liquid crystal flows in two dimensions, Arch. Ration. Mech. Anal., 197 (2010), 297-336. doi: 10.1007/s00205-009-0278-x
    [13] F. Planchon, Global strong solutions in Sobolev or Lebesgue spaces to the incompressible NavierStokes equations in $\mathbb{R}^3$, Ann. Inst. Henri Poincare, 13 (1996), 319-336.
    [14] M. Schonbek, Y. Shibata, Global well-posedness and decay for a $\mathbb{Q}$ tensor model of incompressible nematic liquid crystals in $\mathbb{R}^N$, J. Differ. Equations, 266 (2019), 3034-3065.
    [15] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, USA, 1970.
    [16] I. W. Stewart, T. R. Faulkner, The stability of nematic liquid crystals under crossed electric and magnetic fields, Appl. Math. Lett., 13 (2000), 23-28.
    [17] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
    [18] G. Wang, B. Guo, Existence and uniqueness of the weak solution to the incompressible NavierStokes-Landau-Lifshitz model in 2-dimension, Acta Math. Sci. Ser. B (Engl. Ed.), 37 (2017), 1361- 1372.
    [19] G. Wang, B. Guo, Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 6141-6166.
    [20] R. Wei, Y. Li, Z. Yao, Decay rates of higher-order norms of solutions to the Navier-Stokes-LandauLifshitz system, Appl. Math. Mech. (English Ed.), 39 (2018), 1499-1528. doi: 10.1007/s10483-018-2380-8
    [21] X. Zhai, Y. Li, W. Yan, Global solutions to the Navier-Stokes-Landau-Lifshitz system, Math. Nachr., 289 (2016), 377-388. doi: 10.1002/mana.201400419
    [22] C. Zhao, Y. Li, Z. Song, Trajectory statistical solutions for the 3D Navier-Stokes equations: The trajectory attractor approach, Nonlinear Anal. Real World Appl., 53 (2020), 103077.
    [23] X. Zhao, Y. Zhou, Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations, Discrete Cont. Dyn. Syst. B, In press, doi: 10.3934/dcdsb.2020142.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3166) PDF downloads(177) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog