In this article, we are committed to studying the three-dimensional incompressible Navier-Stokes equations, where the viscosity depends on density according to a power law. We investigate the Cauchy problem by constructing an approximation system and bootstrap argument. Finally, we establish the existence of a global strong solution under the conditions of small initial data and the compatibility condition. Meanwhile, the algebraic decay-in-time rates for the solution are also obtained. It is worth pointing out that the degradation of viscosity is allowed.
Citation: Jianxia He, Ming Li. Existence of global solution to 3D density-dependent incompressible Navier-Stokes equations[J]. AIMS Mathematics, 2024, 9(3): 7728-7750. doi: 10.3934/math.2024375
In this article, we are committed to studying the three-dimensional incompressible Navier-Stokes equations, where the viscosity depends on density according to a power law. We investigate the Cauchy problem by constructing an approximation system and bootstrap argument. Finally, we establish the existence of a global strong solution under the conditions of small initial data and the compatibility condition. Meanwhile, the algebraic decay-in-time rates for the solution are also obtained. It is worth pointing out that the degradation of viscosity is allowed.
[1] | H. Abidi, G. L. Gui, P. Zhang, On the wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces, Arch. Ration. Mech. Anal., 204 (2012), 189–230. https://doi.org/10.1007/s00205-011-0473-4 doi: 10.1007/s00205-011-0473-4 |
[2] | H. Abidi, P. Zhang, Global well-posedness of 3-D density-dependent Navier-Stokes system with variable viscosity, Sci. China Math., 58 (2015), 1129–1150. https://doi.org/10.1007/s11425-015-4983-7 doi: 10.1007/s11425-015-4983-7 |
[3] | H. Abidi, P. Zhang, On the global well-posedness of 2-D inhomogeneous incompressible Navier-Stokes system with variable viscous coefficient, J. Differ. Equ., 259 (2015), 3755–3802. https://doi.org/10.1016/j.jde.2015.05.002 doi: 10.1016/j.jde.2015.05.002 |
[4] | R. A. Adams, J. J. F. Fournier, Sobolev spaces, 2 Eds., Elsevier, 2003. |
[5] | S. A. Antontesv, A. V. Kazhikov, Mathematical study of flows of nonhomogeneous fluids, Lecture Notes, Novosibirsk, USSR: Novosibirsk State University, 1973. |
[6] | E. S. Baranovskii, On flows of Bingham-type fluids with threshold slippage, Adv. Math. Phys., 2017 (2017), 1–6. https://doi.org/10.1155/2017/7548328 doi: 10.1155/2017/7548328 |
[7] | Y. Cho, H. Kim, Unique solvability for the density-dependent Navier-Stokes equations, Nonlinear Anal., 59 (2004), 465–489. https://doi.org/10.1016/j.na.2004.07.020 doi: 10.1016/j.na.2004.07.020 |
[8] | Y. Cho, H. Kim, Existence result for heat-conducting viscous incompressible fluids with vacuum, J. Korean Math. Soc., 45 (2008), 645–681. https://doi.org/10.4134/JKMS.2008.45.3.645 doi: 10.4134/JKMS.2008.45.3.645 |
[9] | H. J. Choe, H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Commun. Partial. Differ. Equ., 28 (2003), 1183–1201. https://doi.org/10.1081/PDE-120021191 doi: 10.1081/PDE-120021191 |
[10] | W. Craig, X. D. Huang, Y. Wang, Global wellposedness for the 3D inhomogeneous incompressible Navier-Stokes equations, J. Math. Fluid Mech., 15 (2013), 747–758. https://doi.org/10.1007/s00021-013-0133-6 doi: 10.1007/s00021-013-0133-6 |
[11] | R. Danchin, Density-dependent incompressible viscous fluids in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1311–1334. https://doi.org/10.1017/S030821050000295X doi: 10.1017/S030821050000295X |
[12] | R. Danchin, Local and global well-posedness results for flows of inhomogeneous viscous fluids, Adv. Differ. Equ., 9 (2004), 353–386. https://doi.org/10.57262/ade/1355867948 doi: 10.57262/ade/1355867948 |
[13] | B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Ration. Mech. Anal., 137 (1997), 135–158. https://doi.org/10.1007/s002050050025 doi: 10.1007/s002050050025 |
[14] | J. Frehse, J. Málek, M. Růžička, Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids, Commun. Partial Differ. Equ., 35 (2010), 1891–1919. https://doi.org/10.1080/03605300903380746 doi: 10.1080/03605300903380746 |
[15] | G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations: steady-state problems, 2 Eds., New York: Springer, 2011. https://doi.org/10.1007/978-0-387-09620-9 |
[16] | G. L. Gui, P. Zhang, Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity, Chin. Ann. Math. Ser. B, 30 (2009), 607–630. https://doi.org/10.1007/s11401-009-0027-3 doi: 10.1007/s11401-009-0027-3 |
[17] | C. He, J. Li, B. Q. Lü, Global well-posedness and exponential stability of 3D Navier-Stokes equations with density-dependent viscosity and vacuum in unbounded domains, Arch. Ration. Mech. Anal., 239 (2021), 1809–1835. https://doi.org/10.1007/s00205-020-01604-5 doi: 10.1007/s00205-020-01604-5 |
[18] | J. X. He, Z. H. Guo, Global strong solution of 3D inhomogeneous incompressible Navier-Stokes equations with degenerate viscosity, J. Math. Anal. Appl., 528 (2023), 127478. https://doi.org/10.1016/j.jmaa.2023.127478 doi: 10.1016/j.jmaa.2023.127478 |
[19] | D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differ. Equ., 120 (1995), 215–254. https://doi.org/10.1006/jdeq.1995.1111 doi: 10.1006/jdeq.1995.1111 |
[20] | X. D. Huang, Y. Wang, Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differ. Equ., 259 (2015), 1606–1627. https://doi.org/10.1016/j.jde.2015.03.008 doi: 10.1016/j.jde.2015.03.008 |
[21] | X. D. Huang, Y. Wang, Global strong solution with vacuum to the two dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771–1788. https://doi.org/10.1137/120894865 doi: 10.1137/120894865 |
[22] | K. Kapoor, N. Dass, A model for the pressure dependence of viscosity in liquids, J. Appl. Phys., 98 (2005), 066105. https://doi.org/10.1063/1.2043253 doi: 10.1063/1.2043253 |
[23] | A. V. Kazhikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk, 216 (1974), 1008–1010. |
[24] | O. A. Ladyzhenskaya, V. A. Solonnikov, Unique solvability of an initial- and boundary-value problem for viscous incompressible nonhomogeneous fluids, J. Soviet Math., 9 (1978), 697–749. https://doi.org/10.1007/BF01085325 doi: 10.1007/BF01085325 |
[25] | O. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, American Mathematical Society, 1968. |
[26] | P. L. Lions, Mathematical topics in fluid mechanics: Volume 1: Incompressible models, Oxford University Press, 1996. |
[27] | B. Q. Lü, S. S. Song, On local strong solutions to the three-dimensional nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, Nonlinear Anal. Real World Appl., 46 (2019), 58–81. https://doi.org/10.1016/j.nonrwa.2018.09.001 doi: 10.1016/j.nonrwa.2018.09.001 |
[28] | J. Naumann, On the existence of weak solutions to the equations of non-stationary motion of heat-conducting incompressible viscous fluids, Math. Methods Appl. Sci., 29 (2006), 1883–1906. https://doi.org/10.1002/mma.754 doi: 10.1002/mma.754 |
[29] | J. Simon, Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093–1117. https://doi.org/10.1137/0521061 doi: 10.1137/0521061 |
[30] | J. W. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differ. Equ., 259 (2015), 1722–1742. https://doi.org/10.1016/j.jde.2015.03.011 doi: 10.1016/j.jde.2015.03.011 |