Research article

Traveling wave solutions to a cubic predator-prey diffusion model with stage structure for the prey

  • Received: 20 April 2022 Revised: 14 June 2022 Accepted: 20 June 2022 Published: 04 July 2022
  • MSC : 34C37, 35C07

  • In this paper, we investigate the traveling wave solutions to a cubic predator-prey diffusion model with stage structure for the prey. Firstly, using the upper and lower solutions method we prove the existence and non-existence of weak traveling wave solutions. Furthermore, we prove that the weak traveling wave solutions are actually traveling wave solutions under additional conditions by using Lyapunov function method and LaSalle's invariance principle.

    Citation: Yujuan Jiao, Jinmiao Yang, Hang Zhang. Traveling wave solutions to a cubic predator-prey diffusion model with stage structure for the prey[J]. AIMS Mathematics, 2022, 7(9): 16261-16277. doi: 10.3934/math.2022888

    Related Papers:

  • In this paper, we investigate the traveling wave solutions to a cubic predator-prey diffusion model with stage structure for the prey. Firstly, using the upper and lower solutions method we prove the existence and non-existence of weak traveling wave solutions. Furthermore, we prove that the weak traveling wave solutions are actually traveling wave solutions under additional conditions by using Lyapunov function method and LaSalle's invariance principle.



    加载中


    [1] S. Ai, Y. Du, R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differ. Equations, 263 (2017), 7782–7814. https://doi.org/10.1016/j.jde.2017.08.021 doi: 10.1016/j.jde.2017.08.021
    [2] H. Cao, S. Fu, Global existence and convergence of solutions to a cross-diffusion cubic predator-prey system with stage structure for the prey, Bound. Value Probl., 1 (2010), 1–24. https://doi.org/10.1155/2010/285961 doi: 10.1155/2010/285961
    [3] Y. Chen, J. Guo, M. Shimojo, Recent developments on a singular predator-prey model, Discrete Contin. Dyn. Syst. Ser. A, 22 (2021), 1811–1825. https://doi.org/10.3934/dcdsb.2020040 doi: 10.3934/dcdsb.2020040
    [4] S. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11–32. https://doi.org/10.1007/BF00276112 doi: 10.1007/BF00276112
    [5] S. Dunbar, Travelling wave solutions of diffusive Lotka Volterra equations: A heteroclinic connection in R, Trans. Amer. Math. Soc., 286 (1984), 557–594. https://doi.org/10.2307/1999810 doi: 10.2307/1999810
    [6] S. Dunbar, Traveling waves in diffusive predator-prey equations: Periodic orbits and point-to-periodic heteroclinic orbits, SIAM J. Appl. Math., 46 (1986), 1057–1078. https://doi.org/10.1137/0146063 doi: 10.1137/0146063
    [7] W. Dunbar, W. Huang, Traveling wave solutions for some classes of diffusive predator-prey model, J. Dynam. Differ. Equations, 28 (2016), 1293–1308. https://doi.org/10.1007/s10884-015-9472-8 doi: 10.1007/s10884-015-9472-8
    [8] D. Denu, S. Ngoma, R. B. Salako, Existence of traveling wave solutions of a deterministic vector-host epidemic model with direct transmission, J. Math. Anal. Appl., 487 (2020), 123995. https://doi.org/10.1016/j.jmaa.2020.123995 doi: 10.1016/j.jmaa.2020.123995
    [9] C. H. Hsu, C. R. Yang, T. H. Yang, T. S. Yang, Existence of traveling wave solutions for diffusive predator-prey type systems, J. Differ. Equations, 252 (2012), 3040–3075. https://doi.org/10.1016/j.jde.2011.11.008 doi: 10.1016/j.jde.2011.11.008
    [10] J. Huang, L. Gang, S. Ruan, Existence of traveling wave solutions in a diffusive predator-prey model, J. Math. Biol., 46 (2003), 132–152. https://doi.org/10.1007/s00285-002-0171-9 doi: 10.1007/s00285-002-0171-9
    [11] W. Huang, Traveling wave solutions for a class of predator-prey systems, J. Dynam. Differ. Equations, 24 (2012), 633–644. https://doi.org/10.1007/s10884-012-9255-4 doi: 10.1007/s10884-012-9255-4
    [12] L. Hung, X. Liao, Nonlinear estimates for traveling wave solutions of reaction diffusion equations, Japan J. Indust. Appl. Math., 37 (2020), 819–830. https://doi.org/10.1007/s13160-020-00420-4 doi: 10.1007/s13160-020-00420-4
    [13] S. Pan, Convergence and traveling wave solutions for a predator prey system with distributed delays, Mediterr. J. Math., 14 (2017), 1–15. https://doi.org/10.1007/s00009-017-0905-y doi: 10.1007/s00009-017-0905-y
    [14] H. Thabet, S. Kendre, J. Peters, M. Kaplan, Solitary wave solutions and traveling wave solutions for systems of time-fractional nonlinear wave equations via an analytical approach, Comput. Appl. Math., 39 (2020), 1–19. https://doi.org/10.1007/s40314-020-01163-1 doi: 10.1007/s40314-020-01163-1
    [15] C. Wang, S. Fu, Traveling wave solutions to diffusive Holling-Tanner predator-prey models, Discrete Contin. Dyn. Syst. Ser. A, 26 (2021), 2239–2255. https://doi.org/10.3934/dcdsb.2021007 doi: 10.3934/dcdsb.2021007
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1423) PDF downloads(77) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog