Research article

Decay estimates for three-dimensional nematic liquid crystal system

  • Received: 22 April 2022 Revised: 25 June 2022 Accepted: 29 June 2022 Published: 04 July 2022
  • MSC : 35Q35, 76D03, 35B40

  • In this paper, we consider the decay rates of the higher-order spatial derivatives of solution to the Cauchy problem of 3D compressible nematic liquid crystals system. The $ \dot{H}^s\; (\frac12 < s < \frac32) $ negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates.

    Citation: Xiufang Zhao. Decay estimates for three-dimensional nematic liquid crystal system[J]. AIMS Mathematics, 2022, 7(9): 16249-16260. doi: 10.3934/math.2022887

    Related Papers:

  • In this paper, we consider the decay rates of the higher-order spatial derivatives of solution to the Cauchy problem of 3D compressible nematic liquid crystals system. The $ \dot{H}^s\; (\frac12 < s < \frac32) $ negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates.



    加载中


    [1] G. Q. Chen, A. Majumdar, D. Wang, R. Zhang, Global weak solutions for the compressible active liquid crystal system, SIAM J. Math. Anal., 50 (2018), 3632–3675. https://doi.org/10.1137/17M1156897 doi: 10.1137/17M1156897
    [2] M. Dai, M. Schonbek, Asymptotic behavior of solutions to the Liquid crystal system in $H^M(\mathbb{R}^3)$, SIAM J. Math. Anal., 46 (2014), 3131–3150. https://doi.org/10.1137/120895342 doi: 10.1137/120895342
    [3] J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol., 5 (1961), 22–34. https://doi.org/10.1122/1.548883 doi: 10.1122/1.548883
    [4] J. L. Ericksen, Continuum theory of nematic liquid crystals, Res. Mech., 21 (1987), 381–392. https://doi.org/10.1007/bf01130288 doi: 10.1007/bf01130288
    [5] J. Fan, F. Li, G. Nakamura, Local well-posedness for a compressible non-isothermal model for nematic liquid crystals, J. Math. Phys., 59 (2018), 031503. https://doi.org/10.1063/1.5027189 doi: 10.1063/1.5027189
    [6] J. Gao, Q. Tao, Z. Yao, Strong solutions to the densi-dependent incompressible nematic liquid crystal flows, J. Differ. Equations, 260 (2016), 3691–3748. https://doi.org/10.1016/j.jde.2015.10.047
    [7] B. Guo, X. Xi, B. Xie, Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals, J. Differ. Equations, 262 (2017), 1413–1460. https://doi.org/10.1016/j.jde.2016.10.015 doi: 10.1016/j.jde.2016.10.015
    [8] T. Huang, C. Wang, H. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Differ. Equations, 252 (2012), 2222–2265. https://doi.org/10.1016/j.jde.2011.07.036 doi: 10.1016/j.jde.2011.07.036
    [9] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. https://doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704
    [10] F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265–283. https://doi.org/10.1007/BF00251810 doi: 10.1007/BF00251810
    [11] F. M. Leslie, Theory of flow phenomena in liquid crystals, Adv. Liquid Cryst., 4 (1979), 1–81. https://doi.org/10.1016/B978-0-12-025004-2.50008-9 doi: 10.1016/B978-0-12-025004-2.50008-9
    [12] F. Lin, C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 154 (2000), 135–156. https://doi.org/10.1007/s002050000102 doi: 10.1007/s002050000102
    [13] F. Lin, C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Commun. Pure Appl. Math., 69 (2016), 1532–1571. https://doi.org/10.1002/cpa.21583 doi: 10.1002/cpa.21583
    [14] L. Nirenberg, On elliptic partial differential equations, Springer, Berlin, Heidelberg, 1959. https://doi.org/10.1007/978-3-642-10926-3-1
    [15] J. C. Robinson, J. L. Rodrigo, W. Sadowski, The three-dimensioanl Navier-Stokes equations, Cambridge studies in advanced mathematic, Cambridge University Press, Cambridge, 2016. https://doi.org/10.1017/CBO9781139095143
    [16] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Unversity Press: Princeton, NJ 1970. https://doi.org/10.1112/blms/5.1.121
    [17] D. Wang, C. Yu, Global weak solution and large-time behavior for the compressible flow of liquid crystal, Arch. Ration. Mech. Anal., 204 (2012), 881–915. https://doi.org/10.1007/s00205-011-0488-x doi: 10.1007/s00205-011-0488-x
    [18] Y. Wang, Decay of the Navier-Stokes-Poisson equations, J. Differ. Equations, 253 (2012), 273–297. https://doi.org/10.1016/j.jde.2012.03.006 doi: 10.1016/j.jde.2012.03.006
    [19] R. Wei, Y. Li, Z. Yao, Decay of the nematic liquid crystal system, Math. Method. Appl. Sci., 39 (2016), 452–474. https://doi.org/10.1002/mma.3494 doi: 10.1002/mma.3494
    [20] X. Zhao, Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$, Commun. Pure Appl. Anal., 18 (2019), 1–13. http://dx.doi.org/10.3934/cpaa.2019001 doi: 10.3934/cpaa.2019001
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1281) PDF downloads(62) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog