Research article

Existence of Sobolev regular solutions for the incompressible flow of liquid crystals in three dimensions

  • Received: 05 April 2022 Revised: 12 June 2022 Accepted: 21 June 2022 Published: 27 June 2022
  • MSC : 35A01, 35Q31

  • This paper considers a simplified three dimensional Ericksen-Leslie System for nematic liquid crystal flows in the unbounded domain $ \Omega: = \mathbb R^+\times \mathbb R^2 $ or the smooth bounded domain $ \Omega $. The hydrodynamic system consists of the Navier-Stokes type equations for the fluid velocity coupled with a convective Ginzburg-Landau type equation for the averaged molecular orientation. We first establish the global existence of Sobolev regular solution with finite energies in Sobolev space $ H^{s}(\Omega)\times H^{s}(\Omega) $, where the index $ s $ of the Sobolev space can be any large fixed integer, but $ s\neq+\infty $. Then we give an asymptotic expansions of a family of Sobolev regularity solutions for such system in $ \Omega $.

    Citation: Junling Sun, Xuefeng Han. Existence of Sobolev regular solutions for the incompressible flow of liquid crystals in three dimensions[J]. AIMS Mathematics, 2022, 7(9): 15759-15794. doi: 10.3934/math.2022863

    Related Papers:

  • This paper considers a simplified three dimensional Ericksen-Leslie System for nematic liquid crystal flows in the unbounded domain $ \Omega: = \mathbb R^+\times \mathbb R^2 $ or the smooth bounded domain $ \Omega $. The hydrodynamic system consists of the Navier-Stokes type equations for the fluid velocity coupled with a convective Ginzburg-Landau type equation for the averaged molecular orientation. We first establish the global existence of Sobolev regular solution with finite energies in Sobolev space $ H^{s}(\Omega)\times H^{s}(\Omega) $, where the index $ s $ of the Sobolev space can be any large fixed integer, but $ s\neq+\infty $. Then we give an asymptotic expansions of a family of Sobolev regularity solutions for such system in $ \Omega $.



    加载中


    [1] F. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pur. Appl. Math., 48 (1995), 501–537. http://dx.doi.org/10.1002/cpa.3160480503 doi: 10.1002/cpa.3160480503
    [2] F. Lin, C. Liu, Partial regularity of thed ynamic system modeling the flow of liquid crystals, Discrete Cont. Dyn.-A, 2 (1996), 1–22. http://dx.doi.org/10.3934/dcds.1996.2.1 doi: 10.3934/dcds.1996.2.1
    [3] J. Ericksen, Equilibrium theory of liquid crystals, In: Advances in liquid crystals, New York: Academic Press, 1976,233–298. http://dx.doi.org/10.1016/B978-0-12-025002-8.50012-9
    [4] F. Leslie, Theory of flow phenomemum in liquid crystal, In: Advances in liquid crystals, New York: Academic Press, 1979, 1–81. http://dx.doi.org/10.1016/B978-0-12-025004-2.50008-9
    [5] F. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Commun. Pur. Appl. Math., 42 (1989), 789–814. http://dx.doi.org/10.1002/cpa.3160420605 doi: 10.1002/cpa.3160420605
    [6] C. Fefferman, Existence and smoothness of the Navier-Stokes equations, The millennium prize problems, 57 (2000), 67.
    [7] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193–248. http://dx.doi.org/10.1007/BF02547354 doi: 10.1007/BF02547354
    [8] L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pur. Appl. Math., 35 (1982), 771–831. http://dx.doi.org/10.1002/cpa.3160350604 doi: 10.1002/cpa.3160350604
    [9] F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Commun. Pur. Appl. Math., 51 (1998), 241–257. http://dx.doi.org/10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
    [10] T. Buckmaster, V. Vicol, Nonuniqueness of weak solutions to the Navier-Stokes equation, Ann. of Math. 189 (2019), 101–144. http://dx.doi.org/10.4007/annals.2019.189.1.3
    [11] O. Benslimane, A. Aberqi, J. Bennouna, Existence and uniqueness of weak solution of $p(x)$-Laplace in Sobolev spaces with variable exponents in complete manifolds, Filomat, 35 (2021), 1453–1463. http://dx.doi.org/10.2298/FIL2105453B doi: 10.2298/FIL2105453B
    [12] P. Constantin, C. Foiaş, Navier-Stokes equations, Chicago: University of Chicago Press, 1988.
    [13] C. Foiaş, O. Manley, R. Rosa, R. Temam, Navier-Stokes equations and turbulence, Cambridge: Cambridge University Press, 2001. http://dx.doi.org/10.1017/CBO9780511546754
    [14] S. Gala, On the improved regularity criterion of the solutions to the Navier-Stokes equations, Commun. Korean Math., 35 (2020), 339–345. http://dx.doi.org/10.4134/CKMS.c190019 doi: 10.4134/CKMS.c190019
    [15] M. Ragusa, On weak solutions of ultraparabolic equations, Nonlinear Anal.-Theor., 47 (2001), 503–511. http://dx.doi.org/10.1016/S0362-546X(01)00195-X doi: 10.1016/S0362-546X(01)00195-X
    [16] V. Scheffer, Boundary regularity for the Navier-Stokes equations in a half-space, Commun. Math. Phys., 85 (1982), 275–299. http://dx.doi.org/10.1007/BF01254460 doi: 10.1007/BF01254460
    [17] R. Temam, Navier-Stokes equations: theory and numerical analysis, North-Holland: Elsevier, 1979. http://dx.doi.org/10.1007/BF01254460
    [18] R. Temam, Navier-Stokes equations and nonlinear functional analysis, Philadelphia: Society for Industrial and Applied Mathematics, 1995. http://dx.doi.org/10.1137/1.9781611970050
    [19] F. Lin, J. Lin, C. Wang, Liquid crystal flows in two dimensions, Arch. Rational Mech. Anal., 197 (2010), 297–336. http://dx.doi.org/10.1007/s00205-009-0278-x doi: 10.1007/s00205-009-0278-x
    [20] M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two, Calc. Var., 40 (2011), 15–36. http://dx.doi.org/10.1007/s00526-010-0331-5 doi: 10.1007/s00526-010-0331-5
    [21] F. Lin, C. Wang, Global existence of weak solutions of the nematic liquid crystal flow in dimension three, Commun. Pur. Appl. Math., 69 (2016), 1532–1571. http://dx.doi.org/10.1002/cpa.21583 doi: 10.1002/cpa.21583
    [22] T. Huang, F. Lin, C. Liu, C. Wang, Finite time singularity of the nematic liquid crystal flow in dimension three, Arch. Rational Mech. Anal., 221 (2016), 1223–1254. http://dx.doi.org/10.1007/s00205-016-0983-1 doi: 10.1007/s00205-016-0983-1
    [23] F. Lin, C. Lin, Existence of solutions for the Ericksen-Leslie system, Arch. Rational Mech. Anal., 154 (2000), 135–156. http://dx.doi.org/10.1007/s002050000102 doi: 10.1007/s002050000102
    [24] X. Hu, D. Wang, Global solution to the three dimensional incompressible flow of liquid crystals, Commun. Math. Phys., 296 (2010), 861–880. http://dx.doi.org/10.1007/s00220-010-1017-8 doi: 10.1007/s00220-010-1017-8
    [25] C. Cavaterra, E. Rocca, H. Wu, Optimal boundary control of a simplified Ericksen-Leslie system for nematic liquid crystal flows in $2D$, Arch. Rational Mech. Anal., 224 (2017), 1037–1086. http://dx.doi.org/10.1007/s00205-017-1095-2 doi: 10.1007/s00205-017-1095-2
    [26] W. Yan, The motion of closed hypersurfaces in the central force field, J. Differ. Equations, 261 (2016), 1973–2005. http://dx.doi.org/10.1016/j.jde.2016.04.020 doi: 10.1016/j.jde.2016.04.020
    [27] W. Yan, Dynamical behavior near explicit self-similar blow up solutions for the Born-Infeld equation, Nonlinearity, 32 (2019), 4682.
    [28] W. Yan, Nonlinear stability of explicit self-similar solutions for the timelike extremal hypersurfaces in $ \mathbb R^{1+3}$, Calc. Var., 59 (2020), 124. http://dx.doi.org/10.1007/s00526-020-01798-2 doi: 10.1007/s00526-020-01798-2
    [29] W. Yan, B. Zhang, Long time existence of solution for the bosonic membrane in the light cone gauge, J. Geom. Anal., 31 (2021), 395–422. http://dx.doi.org/10.1007/s12220-019-00269-1 doi: 10.1007/s12220-019-00269-1
    [30] W. Yan, V. Rǎdulescu, Global small finite energy solutions for the incompressible magnetohydrodynamics equations in $ \mathbb R^+\times \mathbb R^2$, J. Differ. Equations, 277 (2021), 114–152. http://dx.doi.org/10.1016/j.jde.2020.12.031 doi: 10.1016/j.jde.2020.12.031
    [31] X. Zhao, W. Yan, Existence of standing waves for quasi-linear Schrödinger equations on $ \mathbb T^n$, Adv. Nonlinear Anal., 9 (2020), 978–993. http://dx.doi.org/10.1515/anona-2020-0038 doi: 10.1515/anona-2020-0038
    [32] J. Nash, The embedding for Riemannian manifolds, In: Annals of mathematics, Princeton: Princeton University Press, 1956, 20–63.
    [33] J. Moser, A rapidly converging iteration method and nonlinear partial differential equations I, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 20 (1966), 265–315.
    [34] L. Hörmander, Implicit function theorems, Lectures at Stanford University, 1977.
    [35] S. Alinhac, Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Commun. Part. Diff. Eq., 14 (1989), 173–230. http://dx.doi.org/10.1080/03605308908820595 doi: 10.1080/03605308908820595
    [36] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Dordrecht: Springer, 1976.
    [37] V. Yudovich, The linearization method in hydrodynamical stability theory, Providence: American Mathematical Society, 1989.
    [38] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer-Verlag, 1983. http://dx.doi.org/10.1007/978-1-4612-5561-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1437) PDF downloads(95) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog