Research article Special Issues

Asymptotic behavior of some differential inequalities with mixed delays on time scales and their applications

  • Received: 13 March 2024 Revised: 18 April 2024 Accepted: 30 April 2024 Published: 10 May 2024
  • MSC : 34A34, 34C11

  • In this paper, we investigate the asymptotic stability of the trajectories governed by some delay differential inequalities on time scales. Based on time scale theory and the fixed-point theorem, some sufficient conditions are obtained for guaranteeing asymptotic stability. It is interesting that the inequalities studied in this paper include the generalized Halanay inequalities. Due to the fact that dynamic systems on a time scale unify discrete and continuous systems, the results of this paper have wider application value. Furthermore, some numerical examples verify the main results.

    Citation: Bingxian Wang, Mei Xu. Asymptotic behavior of some differential inequalities with mixed delays on time scales and their applications[J]. AIMS Mathematics, 2024, 9(6): 16453-16467. doi: 10.3934/math.2024797

    Related Papers:

  • In this paper, we investigate the asymptotic stability of the trajectories governed by some delay differential inequalities on time scales. Based on time scale theory and the fixed-point theorem, some sufficient conditions are obtained for guaranteeing asymptotic stability. It is interesting that the inequalities studied in this paper include the generalized Halanay inequalities. Due to the fact that dynamic systems on a time scale unify discrete and continuous systems, the results of this paper have wider application value. Furthermore, some numerical examples verify the main results.



    加载中


    [1] A. Halanay, Differential equations: Stability, oscillations, Time Lags, New York: Academic Press, 1966.
    [2] C. Wang, H. Chen, R. Lin, Y. Sheng, F. Jiao, New generalized Halanay inequalities and relative applications to neural networks with variable delays, Bound. Value Probl., 95 (2023). https://doi.org/10.1186/s13661-023-01773-8 doi: 10.1186/s13661-023-01773-8
    [3] A. Ivanov, E. Liz, S. Trofimchuk, Halanay inequality, Yorke $\frac{3}{2}$ stability criterion, and differential equations with maxima, Tokohu Math. J., 54 (2002), 277–295. https://doi.org/10.2748/tmj/1113247567 doi: 10.2748/tmj/1113247567
    [4] C. Baker, Development and application of Halanay-type theory: Evolutionary differential and difference equations with time lag, J. Comput. Appl. Math., 234 (2010), 2663–2682. https://doi.org/10.1016/j.cam.2010.01.027 doi: 10.1016/j.cam.2010.01.027
    [5] B. Liu, W. Lu, T. Chen, Generalized Halanay inequalities and their applications to neural networks with unbounded time-varying delays, IEEE T. Neural Networ., 22 (2011), 1508–1513. https://doi.org/10.1109/TNN.2011.2160987 doi: 10.1109/TNN.2011.2160987
    [6] L. Wen, Y. Yu, W. Wang, Generalized Halanay inequalities for dissipativity of Volterra functional differential equations, J. Math. Anal. Appl., 347 (2008), 169–178. https://doi.org/10.1016/j.jmaa.2008.05.007 doi: 10.1016/j.jmaa.2008.05.007
    [7] D. Ruan, W. Liu, M. Yang, Z. Huang, X. Guo, Novel stability results for Halanay inequality and applications to delay neural networks, IEEE Access, 8 (2020), 19504–19511. https://doi.org/10.1109/ACCESS.2020.2968760 doi: 10.1109/ACCESS.2020.2968760
    [8] L. Wen, W. Wang, Y. Yu, Dissipativity and asymptotic stability of nonlinear neutral delay integro-differential equations, Nonlinear Anal., 72 (2010), 1746–1754. https://doi.org/10.1016/j.na.2009.09.016 doi: 10.1016/j.na.2009.09.016
    [9] W. Wang, A generalized Halanay inequality for stability of nonlinear neutral functional differential equations, J. Inequal. Appl., 2010 (2010), 475019. https://doi.org/10.1155/2010/475019 doi: 10.1155/2010/475019
    [10] S. Udpin, P. Niamsup, New discrete type inequalities and global stability of nonlinear difference equations, Appl. Math. Lett., 22 (2009), 856–859. https://doi.org/10.1016/j.aml.2008.07.011 doi: 10.1016/j.aml.2008.07.011
    [11] B. Ou, B. Jia, L. Erbe, An extended Halanay inequality of integral type on time scales, Electron. J. Qual. Theo., 38 (2015), 1–11. https://doi.org/10.14232/ejqtde.2015.1.38 doi: 10.14232/ejqtde.2015.1.38
    [12] B. Ou, Halanay inequality on time scales with unbounded coefficient and its applications, Indian J. Pure Ap. Mat., 51 (2020), 1023–1038. https://doi.org/10.1007/s13226-020-0447-z doi: 10.1007/s13226-020-0447-z
    [13] B. Ou, B. Jia, L. Erbe, An extended Halanay inequality with unbounded coefficient functions on time scales, J. Inequal. Appl., 2016 (2016), 316. https://doi.org/10.1186/s13660-016-1259-x doi: 10.1186/s13660-016-1259-x
    [14] B. Jia, L. Erbe, R. Mert, A Halanay-type inequality on time scales in higher dimensional spaces, Math. Inequal. Appl., 17 (2014), 813–821. https://doi.org/10.7153/mia-17-59 doi: 10.7153/mia-17-59
    [15] B. Ou, B. Jia, L. Erbe, A generalized Halanay-type inequality on time scales, Dynam. Syst. Appl., 24 (2015), 389–398.
    [16] W. Zhang, D. Zhu, B. Ping, Existence of periodic solutions of a scalar functional differential equation via a fixed point theorem, Mathe. Comput. Model., 46 (2007), 718–729. https://doi.org/10.1016/j.mcm.2006.12.026 doi: 10.1016/j.mcm.2006.12.026
    [17] M. Niezgoda, A companion preorder to G-majorization and a Tarski type fixed-point theorem section: Convex analysis, J. Fix. Point Theory A., 25 (2023), 1–5. https://doi.org/10.1007/s11784-023-01053-z doi: 10.1007/s11784-023-01053-z
    [18] J. Aydi, M. Bota, E. Karapinar, S. Mitrovic, A fixed point theorem for set-valued quasicontractions in b-metric spaces, Fixed Point Theory A., 88 (2012), 2012. https://doi.org/10.1186/1687-1812-2012-88 doi: 10.1186/1687-1812-2012-88
    [19] C. Yang, C. Zhai, Uniqueness of positive solutions for a fractional differential equation via a fixed point theorem of a sum operator, Electron. J. Differ. Eq., 2012 (2012), 1–8. https://doi.org/10.1186/1687-1847-2012-1 doi: 10.1186/1687-1847-2012-1
    [20] D. Jiang, J. Wei, Existence of positive periodic solutions for Volterra intergo-differential equations, Acta Math. Sin., 21 (2001), 553–560. https://doi.org/10.1016/S0252-9602(17)30445-9 doi: 10.1016/S0252-9602(17)30445-9
    [21] M. Bohner, A. Peterson, Dynamic equations on time scales, an introduction with applications, Birkh$\ddot{\mathrm{a}}$user Boston, 2001.
    [22] M. Adivar, E. Bohner, Halanay type inequalities on time scales with applications, Nonlinear Anal., 74 (2011), 7519–7531. https://doi.org/10.1016/j.na.2011.08.007 doi: 10.1016/j.na.2011.08.007
    [23] M. Adivar, Y. Raffoul, Stability, periodicity and boundedness in functional dynamical systems on time scales, Springer, 2020. https://doi.org/10.1007/978-3-030-42117-5
    [24] M. Adivar, Function bounds for solutions of Volterra integro dynamic equations on time scales, Electron. J. Qual. Theo., 7 (2010), 1–22. https://doi.org/10.14232/ejqtde.2010.1.7 doi: 10.14232/ejqtde.2010.1.7
    [25] M. Adivar, Y. Raffoul, Existence of resolvent for Volterra integral equations on time scales, B. Aust. Math. Soc., 82 (2010), 139–155. https://doi.org/10.1017/S0004972709001166 doi: 10.1017/S0004972709001166
    [26] M. Adivar, Y. Raffoul, Stability and periodicity in dynamic delay equations, Comput. Math. Appl., 58 (2009), 264–272. https://doi.org/10.1016/j.camwa.2009.03.065 doi: 10.1016/j.camwa.2009.03.065
    [27] M. Adivar, Y. Raffoul, A note on Stability and periodicity in dynamic delay equations, Comput. Math. Appl., 59 (2010), 3351–3354. https://doi.org/10.1016/j.camwa.2010.03.025 doi: 10.1016/j.camwa.2010.03.025
    [28] V. Kumar, M. Djemai, Existence, stability and controllability of piecewise impulsive dynamic systems on arbitrary time domain, Appl. Math. Model., 117 (2023), 529–548. https://doi.org/10.1016/j.apm.2022.12.027 doi: 10.1016/j.apm.2022.12.027
    [29] C. Wang, Y. Li, Y. Fei, Three positive periodic solutions to nonlinear neutral functional differential equations with impulses and parameters on time scales, Math. Comput. Model., 52 (2010), 1451–1462. https://doi.org/10.1016/j.mcm.2010.06.009 doi: 10.1016/j.mcm.2010.06.009
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(482) PDF downloads(53) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog