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1. Introduction

The properties of differential inequalities are widely used in the study of dynamical systems and
functional differential equations. In 1966, Halanay [1] first proved the following theorem:
Theorem 1.1. Let z(t) be any nonnegative solution of

z′(t) ≤ −az(t) + b sup
t−τ≤s≤t

z(s), t ≥ t0,

and a > b > 0, then there exist two positive constants α, β > 0 such that

z(t) ≤ αe−β(t−t0) for t ≥ t0.

The above inequality is called the Halanay inequality. Due to wide applications in differential dynamic
systems for Halanay inequality, many results have been obtained for Halanay inequality and its
generalizations; see [2–10] and related references.
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In this paper, we focus on the study of differential inequalities (including Halanay inequalities) with
delays on time scales. Let’s briefly review the research on the above aspects. B. Ou et al. [11] proved
the following theorem:
Theorem 1.2. Let z(t) be any nonnegative solution of

z∆(t) ≤ −a(t)z(t) + b(t) sup
t−τ(t)≤s≤t

z(s) + c(t)
∫ ∞

0
K(t, s)z(t − s)∆s, t ≥ t0,

z(s) = φ(s), s ∈ (−∞, t0]T,

where τ(t), a(t), b(t), and c(t) are rd-continuous and bounded functions, and K(t, s) is nonnegative and
continuous. If the following conditions are satisfied:
(1)

∫ ∞
0

K(t, s)eA(t, t − s)∆s is uniformly bounded for t ∈ T.
(2) There exist t1 > t0, T > 0 and ρ > 0 such that for each n ∈ N,∫ t1+nT+T

t1+nT

[
a(t) − b+(t) − c+(t)

∫ ∞

0
K(t, s)∆s

]
> ρ,

where A = supt∈T
{
|a(t)|, |b(t)|, |c(t)|, a(t)

1−µ(t)a(t)

}
. Then for each τ < 1

A ln(1 − B +
ρ

AT ), B =

supt∈T

∫ ∞
0

K(t, s)(eA(t, t − s) − 1)∆s < ρ

AT , z(t) is exponentially stable, i.e., there exist α, β > 0 (which
may depend on the initial value), and such that

z(t) ≤ αe	β(t, t0) for t ∈ [t0,∞).

After that, they generalized the above results to the Halanay inequality on time scales with unbounded
coefficients; see [12, 13]. We can find more results for Halanay inequality on time scales in [14, 15].
We have found that the methods used to study the Halanay inequality in existing literatures are mainly
mathematical analysis methods, and we only found reference most [2] to study the Halanay inequality
using the fixed point theorem. The fixed point theorem is one of the important methods for studying
the main branches of mathematical problems, especially in the study of differential equations and
dynamical systems. Researchers have obtained a large number of research results using the fixed
point theorem, see [16–20]. In this paper, we will consider some delay inequalities by using the fixed
point theorem. Our results improve and extend the existing results for Halanay inequality and its
generalizations. The major contributions of this work are listed as follows:
(1) Most existing results require the solutions and coefficients of Halanay inequalities to be non-
negative; see [3–5, 11, 12]. In this paper, we will remove these limitations.
(2) We develop the research scope of Halanay inequality. Specifically, we study Halanay inequality in
more general cases, and the results obtained have wider applicability.
(3) The research methods for the Halanay inequality on time scales are mostly mathematical analysis
methods and time scale theory, see [11–14]. The research method of this article is the fixed point
theorem. We obtained the properties of delay inequalities under broader conditions.

The contents of this paper are organized as follows: Section 2 gives some preliminaries. Section 3
gives asymptotic behavior for differential inequalities with time-varying delay. Section 4 gives
asymptotic behavior for differential inequalities with time-varying delay and distributed delay. In
Section 5, some numerical examples are presented to illustrate the validity of the theoretical results.
Finally, we conclude this paper.
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2. Preliminaries

A time scale T is a closed subset of R. The means for the forward jump operator σ, backward jump
operator ρ, regressive rd-continuous functions’ set R and positive regressive rd-continuous functions’
set R+ seen in [21]. The interval [a, b]T means [a, b] ∩ T. The intervals [a, b)T, (a, b)T, and (a, b]T
are defined similarly. Crd([t0,∞)T represents the set of all rd-continuous functions on [t0,∞)T. The

exponential function on T is defined by eα(t, s) = exp
( ∫ t

s
ξµ(r)(α(r))∆r

)
, where

ξµ(r)(α(r)) =

{ 1
µ(r) Log(1 + µ(r)α(r)), µ(r) > 0,
α(r), µ(r) = 0.

Lemma 2.1. [21] Let α, β ∈ R. Then

[1] e0(t, s) ≡ 1 and eα(t, t) ≡ 1;
[2] eα(ρ(t), s) = (1 − µ(t)α(t))eα(t, s);
[3] eα(t, s) = 1

eα(s,t) = e	α(s, t), where 	α(t) = −
α(t)

1+µ(t)α(t) .

[4] eα(t, s)eα(s, r) = eα(t, r);
[5] eα(t, s)eβ(t, s) = eα⊕β(t, s).

Lemma 2.2. [21] Suppose that y∆ = p(t)y + f (t) is regressive on a time scale T. Let t0 ∈ T and y0 ∈ R.
The unique solution to the initial value problem

y∆ = p(t)y + f (t), y(t0) = y0

is given by

y(t) = ep(t, t0)y0 +

∫ t

t0
ep(t, σ(τ)) f (τ)∆τ.

Lemma 2.3. [21] Suppose that y∆ = p(t)y + f (t) is regressive on a time scale T. Let t0 ∈ T and y0 ∈ R.
The unique solution of the initial value problem

y∆ = −p(t)yσ + f (t), y(t0) = y0

is given by

y(t) = e	p(t, t0)y0 +

∫ t

t0
e	p(t, τ) f (τ)∆τ.

Lemma 2.4. [22] For a nonnegative function ρ with −ρ ∈ R+, we have

1 −
∫ t

s
ρ(u)∆u ≤ e−ρ(t, s) ≤ exp

{
−

∫ t

s
ρ(u)∆u

}
for all t ≥ s.

For a nonnegative function ρ with ρ ∈ R+, we have

1 +

∫ t

s
ρ(u)∆u ≤ eρ(t, s) ≤ exp

{ ∫ t

s
ρ(u)∆u

}
for all t ≥ s.
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Remark 2.1. For ρ ∈ R+ and ρ(r) > 0 for r ∈ [s, t]T, we have

eρ(t, r) ≤ eρ(t, s) and eρ(a, b) < 1 f or s ≤ a < b ≤ t.

An additive time scale is a time scale that is closed under addition. There exist many time scales
that are not additive; we need the notion of shift operators to avoid additivity assumption on the time
scale. In this paper, we will define the delay terms as using shift operators.
Definition 2.1. [23] Let T∗ be a non-empty subset of the time scale T and t0 ∈ T

∗ a fixed number such
that there exist operators δ± : [t0,∞)T × T∗ satisfying the following properties:
(1) The functions δ± are strictly increasing with respect to their second arguments;
(2) if (T1, u), (T2, u) ∈ D− with T1 > T2, then δ−(T1, u) < δ−(T2, u); if (T1, u), (T2, u) ∈ D+ with
T1 > T2, then δ+(T1, u) > δ+(T2, u);
(3) if t ∈ [t0,∞)T, then (t, t0) ∈ D+ and δ+(t, t0) = t; if t ∈ T∗, then (t, t0) ∈ D+ and δ+(t, t0) = t;
(4) if (s, t) ∈ D±, then (s, δ±(s, t)) ∈ D∓ and δ∓(s, δ±(s, t)) = t;
(5) if (s, t) ∈ D± and (s, δ±(s, t)) ∈ D∓, then (s, δ∓(u, t)) ∈ D± and δ∓(u, δ±(s, t)) = δ±(s, δ∓(u, t)).

Then the operators δ− and δ+ associated with t0 ∈ T
∗ (called the initial point) are said to be backward

and forward shift operators on the set T, respectively. For more details about shift operators and their
applications, see [24–27].

3. Differential inequalities with time-varying delay

Consider the following generalized Halanay’s inequality with time-varying delay:

x∆(t) ≤ −a(t)x(t) + b(t) sup
0≤s≤τ(t)

x(δ−(s, t)), t ≥ t0,

x(s) = x0, s ∈ [δ−(τ̂, t0), t0]T,
(3.1)

where δ−(s, t) is backward shift operator, t ∈ T, x0 ∈ R, τ(t) ≥ 0 is rd-continuous and bounded function
with τ(t) ≤ τ̂, τ̂ is a constant, a(t) and b(t) are rd-continuous on [t0,∞)T.
Theorem 3.1. Assume that x(t) satisfies (3.1), a(t) ≥ 0 with −a ∈ R+, and there exists a constant
γ1 > 0 such that, for t ≥ t0,
(i)

sup
v∈[t0,t]T

∫ v

t0
exp

{
−

∫ v

σ(u)
a(s)∆s

}
|b(u)|∆u ≤ γ1 < 1;

(ii) exp
{ ∫ t

t0
a(u)∆u

}
→ ∞ as t → ∞.

Then x(t)→ 0 as t → ∞.
Proof. Define the following delay dynamic system:

x∆(t) = −a(t)x(t) + b(t) sup
0≤s≤τ(t)

x(δ−(s, t)), t ≥ t0,

x(s) = x0, s ∈ [δ−(τ̂, t0), t0]T.
(3.2)

From (3.2) and Lemma 2.2, we obtain

x(t) = e−a(t, t0)x0 +

∫ t

t0
e−a(t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u. (3.3)
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Define the space Ω1 by

Ω1 = {x : x ∈ Crd([t0,∞)T,R), x(t)→ 0 as t → ∞}

with the norm ||x|| = supt∈[t0,∞)T |x(t)|. Then Ω1 is a Banach space. Define the operator Γ1 : Ω1 → Ω1 by

(Γ1x)(t) = e−a(t, t0)x0 +

∫ t

t0
e−a(t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u, t ≥ t0,

(Γ1x)(s) = x0, s ∈ [δ−(τ̂, t0), t0]T.
(3.4)

Obviously, Γ1 is rd-continuous on [t0,∞)T. We first show that Γ1Ω1 ⊂ Ω1. From Lemma 2.4 and
condition (ii), we have

|e−a(t, t0)x0| ≤ exp
{
−

∫ t

t0
a(u)∆u

}
|x0| → 0 as t → ∞. (3.5)

Since x(t)→ 0 as t → ∞, for any ε > 0, there exists T1 > 0 such that

|x(t)| < ε for t ≥ T1. (3.6)

From Lemma 2.4 and (3.6), we get∣∣∣∣∣ ∫ t

t0
e−a(t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u

∣∣∣∣∣
=

∣∣∣∣∣ ∫ T1

t0
e−a(t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u

+

∫ t

T1

e−a(t, σ(u))b(u) sup
0≤s≤τ(t)

x(δ−(s, u))∆u
∣∣∣∣∣

≤ sup
0≤s≤τ(t),t0≤u≤T1

|x(δ−(s, u))|
∫ T1

t0
exp

{
−

∫ t

σ(u)
a(v)∆v

}
|b(u)|∆u

+ ε

∫ t

T1

exp
{
−

∫ t

σ(u)
a(v)∆v

}
|b(u)|∆u.

(3.7)

From (3.7) and condition (ii), there exists T2 ≥ T1, for any t ≥ T2 and ε > 0 such that

sup
0≤s≤τ(t),t0≤u≤T1

|x(δ−(s, u))|
∫ T1

t0
exp

{
−

∫ t

σ(u)
a(v)∆v

}
|b(u)|∆u < ε

and ∫ t

T1

exp
{
−

∫ t

σ(u)
a(v)∆v

}
|b(u)|∆u < ε.

Thus, ∣∣∣∣∣ ∫ t

t0
e−a(t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u

∣∣∣∣∣ < ε as t → ∞. (3.8)

Hence, in view of (3.4), (3.5), and (3.8), we obtain that |(Γ1x)(t)| → 0 as t → ∞ and Γ1(Ω1) ⊂ Ω1.
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For x, y ∈ Ω1, from condition (i), we have

sup
v∈[t0,t]T

∣∣∣∣∣(Γx)(v) − (Γy)(v)
∣∣∣∣∣

≤ sup
v∈[t0,t]T

∣∣∣∣∣x(v) − y(v)
∣∣∣∣∣ × sup

v∈[0,t]T

∫ v

t0
e−a(v, σ(u))|b(u)|∆u

≤ sup
v∈[t0,t]T

∣∣∣∣∣x(v) − y(v)
∣∣∣∣∣ × sup

v∈[0,t]T

∫ v

t0
exp

{
−

∫ v

σ(u)
a(s)∆s

}
|b(u)|∆u

≤ γ1 sup
v∈[t0,t]T

∣∣∣∣∣x(v) − y(v)
∣∣∣∣∣.

Therefore, we obtain that Γ1 is a contraction mapping and has a unique fixed point x on Ω1, which is a
solution of (3.2) with the initial condition x(s) = x0, s ∈ [δ−(τ̂, t0), t0]T.

Next, we show that the zero solution of (3.1) is asymptotic stable. If x(t) is a solution of (3.2) with
the initial condition x(s) = x0, s ∈ [δ−(τ̂, t0), t0]T. Since x(t) ∈ Ω1, then x(t) is bounded on t ≥ t0.
From (3.5) and (3.8), for any ε > 0, we have

|x(t)| =
∣∣∣∣∣e−a(t, t0)x0 +

∫ t

t0
e−a(t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u

∣∣∣∣∣
≤

∣∣∣∣∣e−a(t, t0)x0

∣∣∣∣∣ +

∣∣∣∣∣ ∫ t

t0
e−a(t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u

∣∣∣∣∣
→ 0 as t → ∞.

Thus, system (3.2) is asymptotically stable which implies system (3.1) is asymptotically stable. The
proof is complete.
Theorem 3.2. Assume that x(t) satisfies (3.1). There exists f (t) ≥ 0 with − f ∈ R+ and there exists
constant γ2 > 0 such that, for t ≥ t0,
(i)

sup
v∈[t0,t]T

∫ v

t0
exp

{
−

∫ v

σ(u)
a(s)∆s

}(
| f (u) − a(u)| + |b(u)|

)
∆u ≤ γ2 < 1;

(ii) exp
{ ∫ t

t0
f (u)∆u

}
→ ∞ as t → ∞.

Then x(t)→ 0 as t → ∞.
Proof. From (3.2) and Lemma 2.2, we obtain

x(t) = e− f (t, t0)x0 +

∫ t

t0
e− f (t, σ(u))[ f (u) − a(u)]∆u +

∫ t

t0
e− f (t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u. (3.9)

Define a space Ω2 by

Ω2 = {x : x ∈ Crd([t0,∞)T,R), x(t)→ 0 as t → ∞}
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with the norm ||x|| = supt∈[t0,∞)T |x(t)|. Then Ω2 is a Banach space. Define the operator Γ2 : Ω1 → Ω2 by

(Γ2x)(t) = e− f (t, t0)x0 +

∫ t

t0
e− f (t, σ(u))[ f (u) − a(u)]∆u

+

∫ t

t0
e− f (t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u, t ≥ t0,

(Γ2x)(s) = x0, s ∈ [δ−(τ̂, t0), t0]T.

(3.10)

Obviously, Γ2 is rd-continuous on [t0,∞)T. Similar to the proofs of (3.5) and (3.8), using Lemma 2.4
and condition (ii), we have

|e− f (t, t0)x0| ≤ exp
{
−

∫ t

t0
f (u)∆u

}
|x0| → 0 as t → ∞ (3.11)

and ∣∣∣∣∣ ∫ t

t0
e−a(t, σ(u))

(
f (u) − a(u)

)
∆u

∣∣∣∣∣
+

∣∣∣∣∣ ∫ t

t0
e−a(t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u

∣∣∣∣∣ < ε as t → ∞.
(3.12)

Hence, in view of (3.10)–(3.12), we obtain that |(Γ2x)(t)| → 0 as t → ∞ and Γ2(Ω2) ⊂ Ω2.
For x, y ∈ Ω2, from condition (i), we have

sup
v∈[t0,t]T

∣∣∣∣∣(Γ2x)(v) − (Γ2y)(v)
∣∣∣∣∣

≤ sup
v∈[t0,t]T

∣∣∣∣∣x(v) − y(v)
∣∣∣∣∣ × sup

v∈[0,t]T

∫ v

t0
e−a(v, σ(u))

(
| f (u) − a(u)| + |b(u)|

)
∆u

≤ sup
v∈[t0,t]T

∣∣∣∣∣x(v) − y(v)
∣∣∣∣∣ × sup

v∈[0,t]T

∫ v

t0
exp

{
−

∫ v

σ(u)
a(s)∆s

}(
| f (u) − a(u)| + |b(u)|

)
∆u

≤ γ2 sup
v∈[t0,t]T

∣∣∣∣∣x(v) − y(v)
∣∣∣∣∣.

Therefore, we obtain that Γ2 is a contraction mapping and has a unique fixed point x on Ω2, which is
a solution of (3.2) with the initial condition x(s) = x0, s ∈ [δ−(τ̂, t0), t0]T. Since x(t) ∈ Ω2, then x(t) is
bounded on t ≥ t0. From (3.11) and (3.12), for any ε > 0, we have

|x(t)| =
∣∣∣∣∣e−a(t, t0)x0 +

∫ t

t0
e−a(t, σ(u))[ f (u) − a(u)]∆u +

∫ t

t0
e−a(t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u

∣∣∣∣∣
≤

∣∣∣∣∣e−a(t, t0)x0

∣∣∣∣∣ +

∣∣∣∣∣ ∫ t

t0
e−a(t, σ(u))[ f (u) − a(u)]∆u

∣∣∣∣∣ +

∣∣∣∣∣ ∫ t

t0
e−a(t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u

∣∣∣∣∣
→ 0 as t → ∞.

Thus, system (3.2) is asymptotically stable which implies system (3.1) is asymptotically stable. The
proof is complete.
Remark 3.1. Theorem 3.2 removes the condition of non-negativity of coefficient a(t); therefore, the
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results of Theorem 3.2 improve the corresponding ones of Theorem 3.1.

Consider the following generalized Halanay’s inequality with time-varying delay:

x∆(t) ≤ −a(t)x(σ(t)) + b(t) sup
0≤s≤τ(t)

x(δ−(s, t)), t ≥ t0,

x(s) = x0, s ∈ [δ−(τ̂, t0), t0]T,
(3.13)

where δ−(s, t) is backward shift operator, t ∈ T, x0 ∈ R, τ(t) ≥ 0 is rd-continuous and bounded function
with τ(t) ≤ τ̂, τ̂ is a constant, a(t) and b(t) are rd-continuous on [t0,∞)T. Based on Lemma 2.3 and
Theorems 3.1 and 3.2, we have the following two corollaries:
Corollary 3.1. Assume that x(t) satisfies (3.13), a(t) ≥ 0 with −a ∈ R+, and there exists a constant
γ3 > 0 such that, for t ≥ t0,
(i)

sup
v∈[t0,t]T

∫ v

t0
exp

{
−

∫ v

u
a(s)∆s

}
|b(u)|∆u ≤ γ3 < 1;

(ii) exp
{ ∫ t

t0
a(u)∆u

}
→ ∞ as t → ∞.

Then x(t)→ 0 as t → ∞.
Corollary 3.2. Assume that x(t) satisfies (3.13). There exists f (t) ≥ 0 with − f ∈ R+ and there exists
a constant γ4 > 0 such that, for t ≥ t0,
(i)

sup
v∈[t0,t]T

∫ v

t0
exp

{
−

∫ v

u
a(s)∆s

}(
| f (u) − a(u)| + |b(u)|

)
∆u ≤ γ4 < 1;

(ii) exp
{ ∫ t

t0
f (u)∆u

}
→ ∞ as t → ∞.

Then x(t)→ 0 as t → ∞.

4. Differential inequalities with mixed delays

Consider the following generalization of Halanay’s inequality with mixed delays:

x∆(t) ≤ −a(t)x(t) + b(t) sup
0≤s≤τ(t)

x(δ−(s, t)) + c(t)
∫ ∞

0
K(s)x(δ−(s, t))∆s, t ≥ t0,

x(s) = x0, s ∈ (−∞, t0]T,
(4.1)

where δ−(s, t) is backward shift operator, t ∈ T, x0 ∈ R, τ(t) ≥ 0 is rd-continuous and bounded
function with τ(t) ≤ τ̂, τ̂ is a constant, a(t), b(t), and c(t) are rd-continuous on [t0,∞)T, and K(t) is
rd-continuous on [0,∞)T.
Theorem 4.1. Assume that x(t) satisfies (4.1), a(t) ≥ 0 with −a ∈ R+,

∫ ∞
0
|K(s)|∆s < ∞ and there

exists a constant γ5 > 0 such that, for t ≥ t0,
(i)

sup
v∈[t0,t]T

∫ v

t0
exp

{
−

∫ v

σ(u)
a(s)∆s

}(
|b(u) + |c(u)|

∫ ∞

0
|K(s)|∆s

)
∆u ≤ γ5 < 1;
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(ii) exp
{ ∫ t

t0
a(u)∆u

}
→ ∞ as t → ∞.

Then x(t)→ 0 as t → ∞.
Proof. Define the following delay dynamic system:

x∆(t) = −a(t)x(t) + b(t) sup
0≤s≤τ(t)

x(δ−(s, t)) + c(t)
∫ ∞

0
K(s)x(δ−(s, t))∆s, t ≥ t0,

x(s) = x0, s ∈ (−∞, t0]T.
(4.2)

From (4.2) and Lemma 2.2, we obtain

x(t) = e−a(t, t0)x0 +

∫ t

t0
e−a(t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u

+

∫ t

t0
e−a(t, σ(u))c(u)

∫ ∞

0
K(s)x(δ−(s, u))∆s∆u.

(4.3)

Define a space Ω3 by

Ω3 = {x : x ∈ Crd([t0,∞)T,R), x(t)→ 0 as t → ∞}

with the norm ||x|| = supt∈[t0,∞)T |x(t)|. Then Ω3 is a Banach space. Define the operator Γ3 : Ω3 → Ω3 by

(Γ3x)(t) = e−a(t, t0)x0 +

∫ t

t0
e−a(t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u

+

∫ t

t0
e−a(t, σ(u))c(u)

∫ ∞

0
K(s)x(δ−(s, u))∆s∆u, t ≥ t0,

(Γ3x)(s) = x0, s ∈ (−∞, t0]T.

(4.4)

Obviously, Γ3 is rd-continuous on [t0,∞)T. Similar to the proofs of (3.5) and (3.8), using Lemma 2.4
and condition (ii), we have

|e−a(t, t0)x0| ≤ exp
{
−

∫ t

t0
a(u)∆u

}
|x0| → 0 as t → ∞ (4.5)

and ∣∣∣∣∣ ∫ t

t0
e−a(t, σ(u))c(u)

∫ ∞

0
K(s)x(δ−(s, u))∆s∆u

∣∣∣∣∣
+

∣∣∣∣∣ ∫ t

t0
e−a(t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u

∣∣∣∣∣ < ε as t → ∞.
(4.6)

Hence, in view of (4.4)–(4.6), we obtain that |(Γ3x)(t)| → 0 as t → ∞ and Γ3(Ω3) ⊂ Ω3.
For x, y ∈ Ω2, from condition (i), we have

sup
v∈[t0,t]T

∣∣∣∣∣(Γ2x)(v) − (Γ2y)(v)
∣∣∣∣∣

≤ sup
v∈[t0,t]T

∣∣∣∣∣x(v) − y(v)
∣∣∣∣∣ × sup

v∈[0,t]T

∫ v

t0
e−a(v, σ(u))

(
|b(u)| + |c(u)|

∫ ∞

0
|K(s)|∆s

)
∆u

≤ sup
v∈[t0,t]T

∣∣∣∣∣x(v) − y(v)
∣∣∣∣∣ × sup

v∈[0,t]T

∫ v

t0
exp

{
−

∫ v

σ(u)
a(s)∆s

}(
|b(u)| + |c(u)|

∫ ∞

0
|K(s)|∆s

)
∆u

≤ γ5 sup
v∈[t0,t]T

∣∣∣∣∣x(v) − y(v)
∣∣∣∣∣.
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Therefore, we obtain that Γ3 is a contraction mapping and has a unique fixed point x on Ω3, which is
a solution of (4.2) with the initial condition x(s) = x0, s ∈ (−∞, t0]T. Since x(t) ∈ Ω3, then x(t) is
bounded on t ≥ t0. From (4.5) and (4.6), for any ε > 0, we have

|x(t)| =
∣∣∣∣∣e−a(t, t0)x0 +

∫ t

t0
e−a(t, σ(u))c(u)

∫ ∞

0
K(s)x(δ−(s, u))∆s∆u

+

∫ t

t0
e−a(t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u

∣∣∣∣∣
≤

∣∣∣∣∣e−a(t, t0)x0

∣∣∣∣∣ +

∣∣∣∣∣ ∫ t

t0
e−a(t, σ(u))c(u)

∫ ∞

0
K(s)x(δ−(s, u))∆s∆u

∣∣∣∣∣
+

∣∣∣∣∣ ∫ t

t0
e−a(t, σ(u))b(u) sup

0≤s≤τ(t)
x(δ−(s, u))∆u

∣∣∣∣∣
→ 0 as t → ∞.

Thus, system (4.2) is asymptotically stable which implies system (4.1) is asymptotically stable. The
proof is complete.

In order to remove the nonnegative limitation of coefficient a(t) in Theorem 4.1, we provide the
following theorem:
Theorem 4.2. Assume that x(t) satisfies (4.1). There exists f (t) ≥ 0 with − f ∈ R+ and there exists
constant γ6 > 0 such that, for t ≥ t0,
(i)

sup
v∈[t0,t]T

∫ v

t0
exp

{
−

∫ v

σ(u)
a(s)∆s

}(
| f (u) − a(u)| + |b(u)| + |c(u)|

∫ ∞

0
|K(s)|∆s

)
∆u

≤ γ6 < 1;

(ii) exp
{ ∫ t

t0
f (u)∆u

}
→ ∞ as t → ∞.

Then x(t)→ 0 as t → ∞.
The proof of Theorem 4.2 is the same as that of Theorem 3.2; we omit it. Furthermore, consider the
following generalized Halanay’s inequality with mixed delays:

x∆(t) ≤ −a(t)x(σ(t)) + b(t) sup
0≤s≤τ(t)

x(δ−(s, t)) + c(t)
∫ ∞

0
K(s)x(δ−(s, t))∆s, t ≥ t0,

x(s) = x0, s ∈ (−∞, t0]T,
(4.7)

where δ−(s, t) is backward shift operator, t ∈ T, x0 ∈ R, τ(t) ≥ 0 is rd-continuous and bounded
function with τ(t) ≤ τ̂, τ̂ is a constant, a(t), b(t), and c(t) are rd-continuous on [t0,∞)T, and K(t) is
rd-continuous on [0,∞)T. Based on Lemma 2.3 and Theorems 4.1 and 4.2, we have the following two
corollaries.
Corollary 4.1. Assume that x(t) satisfies (4.7), a(t) ≥ 0 with −a ∈ R+, and there exists a constant
γ7 > 0 such that, for t ≥ t0,
(i)

sup
v∈[t0,t]T

∫ v

t0
exp

{
−

∫ v

u
a(s)∆s

}(
|b(u) + |c(u)|

∫ ∞

0
|K(s)|∆s

)
∆u ≤ γ7 < 1;
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(ii) exp
{ ∫ t

t0
a(u)∆u

}
→ ∞ as t → ∞.

Then x(t)→ 0 as t → ∞.
Corollary 4.2. Assume that x(t) satisfies (4.7). There exists f (t) ≥ 0 with − f ∈ R+ and there exists
constant γ8 > 0 such that, for t ≥ t0,
(i)

sup
v∈[t0,t]T

∫ v

t0
exp

{
−

∫ v

u
a(s)∆s

}(
| f (u) − a(u)| + |b(u)| + |c(u)|

∫ ∞

0
|K(s)|∆s

)
∆u

≤ γ8 < 1;

(ii) exp
{ ∫ t

t0
f (u)∆u

}
→ ∞ as t → ∞.

Then x(t)→ 0 as t → ∞.
Remark 4.1. In this paper, we mainly use the Banach contraction mapping principle to study the
asymptotic stability of the trajectories governed by some delay differential inequalities on time scales.
In fact, we can use Schauder’s fixed point theorem to establish the existence of at least one solution for
the considered systems (see [28]); we can also use Leggett Williams fixed point theorem to investigate
the existence of three solutions to considered systems, see [29]. We hope that more results from
systems (3.1) and (4.1) can be obtained in future work.
Remark 4.2. We give the advantages of this paper as follows:
(1) Since many time scales that are not additive, we define the delay terms as using shift operators.
(2) We extend the research scope and develop research methods for Halanay inequality.
(3) The research method of this article can study various types of Halanay inequalities, such as Halanay
inequality with impulsive terms and Halanay inequality with stochastic terms.

5. Examples

Example 5.1. When T = Z, consider the following system:

∆x(k) ≤ −a(k)x(k) + b(k) sup
0≤s≤τ(k)

x(k − s), k ≥ 0, k ∈ Z, (5.1)

where

∆x(k) = x(k + 1) − x(k), a(k) = 1 − 0.5 sin(2k + 1.5), b(k) = 0.2k+1, τ(k) = 3 − 0.5 cos k.

Choosing γ1 = 0.26 < 1, we have

sup
v∈[0,t]Z

∫ v

0
exp

{
−

∫ v

σ(u)
a(s)∆s

}
|b(u)|∆u < 0.26 < 1

and exp
{ ∫ t

0
a(u)∆u

}
→ ∞ as t → ∞.

One can see that all conditions of Theorem 3.1 hold. Hence, system (5.1) is asymptotically stable.
Figure 1 shows the trajectory of the solution to the system (5.1).
Example 5.2. When T = Z, consider the following system:

∆x(k) ≤ −a(k)x(k) + b(k) sup
0≤s≤τ(k)

x(k − s) + c(k)
∞∑

i=0

K(i)x(k − i), k ≥ 0, k ∈ Z, (5.2)
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where
∆x(k) = x(k + 1) − x(k), a(k) = 3 − 0.2 sin(3k + 0.5), b(k) = 0.4k+1,

c(k) =

( 1
16

)k+1

, τ(k) = 4 − cos k, K(i) = 0.6i+1.

Choosing γ2 = 0.86, we have

sup
v∈[0,t]Z

∫ v

0
exp

{
−

∫ v

σ(u)
a(s)∆s

}(
|b(u) + |c(u)|

∫ ∞

0
|K(s)|∆s

)
∆u < 0.86 < 1

and exp
{ ∫ t

0
a(u)∆u

}
→ ∞ as t → ∞.

One can see that all conditions of Theorem 4.1 hold. Hence, system (5.2) is asymptotically stable.
Figure 2 shows the trajectory of the solution to the system (5.2).
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Figure 1. The state’s trajectory of the system (5.1).
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Figure 2. The state’s trajectory of the system (5.2).
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6. Conclusions

In this work, some novel asymptotical stability results for delay differential inequalities on time
scales have been derived by using time scale theory and the fixed point theorem. Our results do
not require the system coefficients to be non-negative but extend the corresponding results of [7–9].
It should be pointed out that the use of the fixed point theorem makes the proof process easier to
understand. At last, two examples with numerical simulations have been presented to illustrate the
effectiveness of our results. In the future, we will study delay differential inequalities with a neutral-
type operator on time scales.
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