Research article

Improvement of inequalities related to powers of the numerical radius

  • Received: 09 December 2023 Revised: 29 March 2024 Accepted: 07 April 2024 Published: 07 June 2024
  • MSC : 47A12, 47A30, 47A63

  • We presented some improvements of the inequalities involving the numerical radius powers for products and sums of the operators investigated in the Hilbert space. We generalized and improved numerical radius inequalities with a generalization of the mixed Schwarz inequality. Among other things, with the help of a fraction and its power, as well as the introduction of $ \xi $, we provided a very good improvement for the $ \omega^r(E) $, for $ E\in \mathcal{B}(\mathcal{H}_s) $.

    Citation: Yaser Khatib, Stanford Shateyi. Improvement of inequalities related to powers of the numerical radius[J]. AIMS Mathematics, 2024, 9(7): 19089-19103. doi: 10.3934/math.2024930

    Related Papers:

  • We presented some improvements of the inequalities involving the numerical radius powers for products and sums of the operators investigated in the Hilbert space. We generalized and improved numerical radius inequalities with a generalization of the mixed Schwarz inequality. Among other things, with the help of a fraction and its power, as well as the introduction of $ \xi $, we provided a very good improvement for the $ \omega^r(E) $, for $ E\in \mathcal{B}(\mathcal{H}_s) $.



    加载中


    [1] J. S. Aujla, F. C. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl., 369 (2003), 217–233. https://doi.org/10.1016/S0024-3795(02)00720-6 doi: 10.1016/S0024-3795(02)00720-6
    [2] S. S. Dragomir, Some inequalities generalizing Kato's and Furuta's results, Filomat, 28 (2014), 179–195. https://doi.org/10.2298/FIL1401179D doi: 10.2298/FIL1401179D
    [3] S. S. Dragomir, On some inequalities for numerical radius of operators in Hilbert spaces, Korean J. Math., 25 (2017), 247–259. https://doi.org/10.11568/kjm.2017.25.2.247 doi: 10.11568/kjm.2017.25.2.247
    [4] M. El-Haddad, F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Ⅱ, Stud. Math., 182 (2007), 133–140. https://doi.org/10.4064/sm182-2-3 doi: 10.4064/sm182-2-3
    [5] M. Elin, S. Reich, D. Shoikhet, Numerical range of holomoprhic mappings and applications, Cham: Birkhäuser, 2019. https://doi.org/10.1007/978-3-030-05020-7
    [6] G. H. Hardy, J. E. Littewood, G. Polya, Inequalities, 2 Eds., Cambridge: Cambridge University Press, 1988.
    [7] E. Jaafari, M. S. Asgari, M. S. Hosseini, B. Moosavi, On the Jensen's inequality and its variants, AIMS Mathematics, 5 (2020), 1177–1185. https://doi.org/10.3934/math.2020081 doi: 10.3934/math.2020081
    [8] H. Kadakal, Hermite-Hadamard type inequalities for subadditive functions, AIMS Mathematics, 5 (2020), 930–939. https://doi.org/10.3934/math.2020064 doi: 10.3934/math.2020064
    [9] M. Kian, Operator Jensen inequality for superquadratic functions, Linear Algebra Appl., 456 (2014), 82–87. https://doi.org/10.1016/j.laa.2012.12.011 doi: 10.1016/j.laa.2012.12.011
    [10] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Stud. Math., 158 (2003), 11–17. https://doi.org/10.4064/SM158-1-2 doi: 10.4064/SM158-1-2
    [11] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Stud. Math., 168 (2005), 73–80. https://doi.org/10.4064/sm168-1-5 doi: 10.4064/sm168-1-5
    [12] A. K. Mirmostafaee, O. P. Rahpeyma, M. E. Omidvar, Numerical radius inequalities for finite sums of operators, Demonstr. Math., 47 (2014), 963–970. https://doi.org/10.2478/dema-2014-0076 doi: 10.2478/dema-2014-0076
    [13] H. R. Moradi, S. Furuichi, F. C. Mitroi, R. Naseri, An extension of Jensen's operator inequality and its application to Young inequality, RACSAM Rev. R. Acad. A, 113 (2019), 605–614. https://doi.org/10.1007/s13398-018-0499-7 doi: 10.1007/s13398-018-0499-7
    [14] J. Pečarić, T. Furuta, J. Mićić Hot, Y. Seo, Mond-Pečarić method in operator inequalities: Inequalities for bounded selfadjoint operators on a Hilbert space, Zagreb: University of Zagreb, 2005.
    [15] M. Sababheh, H. R. Moradi, More accurate numerical radius inequalities, Linear Multilinear A., 69 (2019), 1964–1973. https://doi.org/10.1080/03081087.2019.1651815 doi: 10.1080/03081087.2019.1651815
    [16] T. Saeed, M. A. Khan, H. Ullah, Refinements of Jensen's inequality and applications. AIMS Mathematics, 7 (2022), 5328–5346. https://doi.org/10.3934/math.2022297 doi: 10.3934/math.2022297
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(551) PDF downloads(52) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog