Loading [MathJax]/jax/output/SVG/jax.js
Research article

A robust regional eigenvalue assignment problem using rank-one control for undamped gyroscopic systems

  • Received: 30 March 2024 Revised: 31 May 2024 Accepted: 04 June 2024 Published: 07 June 2024
  • MSC : 65F18, 93C15

  • Considering the advantages of economic benefit and cost reduction by using rank-one control, we investigated the problem of robust regional eigenvalue assignment using rank-one control for undamped gyroscopic systems. Based on the orthogonality relation, we presented a method for solving partial eigenvalue assignment problems to reassign partial undesired eigenvalues accurately. Since it is difficult to achieve robust control by assigning desired eigenvalues to precise positions with rank-one control, we assigned eigenvalues within specified regions to provide the necessary freedom. According to the sensitivity analysis theories, we derived the sensitivity of closed-loop eigenvalues to parameter perturbations to measure robustness and proposed a numerical algorithm for solving robust regional eigenvalue assignment problems so that the closed-loop eigenvalues were insensitive to parameter perturbations. Numerical experiments demonstrated the effectiveness of our method.

    Citation: Binxin He, Hao Liu. A robust regional eigenvalue assignment problem using rank-one control for undamped gyroscopic systems[J]. AIMS Mathematics, 2024, 9(7): 19104-19124. doi: 10.3934/math.2024931

    Related Papers:

    [1] Rajish Kumar P, Sunil Jacob John . On redundancy, separation and connectedness in multiset topological spaces. AIMS Mathematics, 2020, 5(3): 2484-2499. doi: 10.3934/math.2020164
    [2] Seçil Çeken, Cem Yüksel . Generalizations of strongly hollow ideals and a corresponding topology. AIMS Mathematics, 2021, 6(12): 12986-13003. doi: 10.3934/math.2021751
    [3] Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad . (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates. AIMS Mathematics, 2021, 6(5): 4677-4690. doi: 10.3934/math.2021275
    [4] Qian Liu, Jianrui Xie, Ximeng Liu, Jian Zou . Further results on permutation polynomials and complete permutation polynomials over finite fields. AIMS Mathematics, 2021, 6(12): 13503-13514. doi: 10.3934/math.2021783
    [5] Usman Babar, Haidar Ali, Shahid Hussain Arshad, Umber Sheikh . Multiplicative topological properties of graphs derived from honeycomb structure. AIMS Mathematics, 2020, 5(2): 1562-1587. doi: 10.3934/math.2020107
    [6] Ninghe Yang . Exact wave patterns and chaotic dynamical behaviors of the extended (3+1)-dimensional NLSE. AIMS Mathematics, 2024, 9(11): 31274-31294. doi: 10.3934/math.20241508
    [7] Ali N. A. Koam, Ali Ahmad, Yasir Ahmad . Computation of reverse degree-based topological indices of hex-derived networks. AIMS Mathematics, 2021, 6(10): 11330-11345. doi: 10.3934/math.2021658
    [8] R. Aguilar-Sánchez, J. A. Mendez-Bermudez, José M. Rodríguez, José M. Sigarreta . Multiplicative topological indices: Analytical properties and application to random networks. AIMS Mathematics, 2024, 9(2): 3646-3670. doi: 10.3934/math.2024179
    [9] Muhammad Riaz, Khadija Akmal, Yahya Almalki, S. A. Alblowi . Cubic m-polar fuzzy topology with multi-criteria group decision-making. AIMS Mathematics, 2022, 7(7): 13019-13052. doi: 10.3934/math.2022721
    [10] Maryam Salem Alatawi, Ali Ahmad, Ali N. A. Koam, Sadia Husain, Muhammad Azeem . Computing vertex resolvability of benzenoid tripod structure. AIMS Mathematics, 2022, 7(4): 6971-6983. doi: 10.3934/math.2022387
  • Considering the advantages of economic benefit and cost reduction by using rank-one control, we investigated the problem of robust regional eigenvalue assignment using rank-one control for undamped gyroscopic systems. Based on the orthogonality relation, we presented a method for solving partial eigenvalue assignment problems to reassign partial undesired eigenvalues accurately. Since it is difficult to achieve robust control by assigning desired eigenvalues to precise positions with rank-one control, we assigned eigenvalues within specified regions to provide the necessary freedom. According to the sensitivity analysis theories, we derived the sensitivity of closed-loop eigenvalues to parameter perturbations to measure robustness and proposed a numerical algorithm for solving robust regional eigenvalue assignment problems so that the closed-loop eigenvalues were insensitive to parameter perturbations. Numerical experiments demonstrated the effectiveness of our method.



    In today's world mathematics is necessary in all fields. It is an essential instrument for comprehension around us. It covers all the facts of life. Mathematics is the branch of science that deals with the reasoning of figures, numbers and order. In our daily life, we use mathematics in our routine work in various forms. There are many branches of mathematics like algebra, geometry, arithmetic, trigonometry, analysis and many other theories. Graph theory is the study of mathematical objects known as graph, which consist of vertices connected by edges. It is the mathematical theory which deals with the properties and applications of graphs. When we apply graph theory on chemistry then it is called chemical graph theory. In mathematical models graph theory is used to get a deep understanding of the physical properties of these chemical compounds. Some physical properties such as boiling point, melting point, density are associated to geometrical structure of the compound. Now a days, several ways are used in mathematical chemistry to understand chemical structure which are existing behind the chemical concepts, to create and inquire novel mathematical representation. In complete history of chemistry certain scientist, usually contemplates connections between mathematics with chemistry and the possibility of using mathematics to analyze and predict new chemical concepts. Mufti defined sanskruti and harmonic indices of certain graph structure [25]. Babujee calculated topological indices and new graph structures in 2012 [5]. Farahani worked on a new version of zagreb index of circumcoronene series of benzenoid in 2013 [7]. Hayat defined some degree based topological indices of certain nanotubes [8]. Imran worked on topological indices of certain interconnection networks in 2014 [14]. In 2016, Siddiqui computed zagreb indices and zagreb polynomials of some nanostars dendrimers [27]. Saleem computed retractions and homomorphisms on some operations of graphs [28]. Iqbal calculated eccentricity based topological indices of some benzenoid structures [12]. Yang examined two-point resistances and random walks on stellated regular graphs [29]. Islam defined M-polynomial and entropy of paraline graph of Napthalene in 2019 [11]. Iqbal worked on topological indices of subdivided and line graph of subdivided friendship graph [13]. In 2020, Afzal examined M-polynomial and topological indices of zigzag edge coronoid fused by starphene [1]. Archdeacon defined the medial graph and voltage-current duality [2]. Munir computed M-polynomial and degree-based topological indices of polyhex nanotubes [22]. Iqbal calculated ve topological indices of tickysim spinnaker model [15]. Azhar examined a note on valency dependence invariants of L(G(K)) Graph [4]. Jamil defined the first general zagreb eccentricity index [18]. Iqbal defined ABC4 and GA5 index of subdivided and line graph of subdivided dutch windmill graph [16]. Maji worked on the first entire zagreb index of various corona products and their bounds [23]. Imran describe computation of topological indices of NEPS of graphs [17]. Hayat computed topological indices for networks derived by applying graph operations from honeycomb structures [9], based on this idea we have computed the topological indices for transformed structures. Next we have few definitions [3,9]:

    Definition 1:

    Let K be a simple connected graph its M-polynomial is defined as;

    M(K;x,y)=SabTmab(K)xayb, (i)

    where: S = Min{dβ|βV(K)}, T = Max{dβ|βV(K)}, and mab(K) is the number of edges γβE(K) such that {dγ, dβ} = {a,b}.

    Definition 2:

    When we place a new vertex in each face of a planar graph G, and attach that vertex with all the vertices of the respective face of G, we get the stellation of G and denote it as St(G).

    Definition 3:

    We introduce a node in each edge of the graph and join the nodes if their corresponding edges are adjacent and is denoted by Md(G).

    Definition 4:

    We introduce a node in each bounded faces of the graph and join the nodes by an edge if the faces share an edge in graph it is called bounded dual. It is represented as Bdu(G).

    T. Réti introduced First and Second Zagreb indices are [26],

    M1(K)=γβE(K)(dγ+dβ), (1.1)
    M2(K)=γβE(K)(dγdβ). (1.2)

    Second modified Zagreb index is defined as [10],

    mM2(k)=γβE(K)(1dγdβ). (1.3)

    Symmetric division and reciprocal general Randic index is [19],

    SDD(K)=γβE(K) {min(dγ,dβ)max(dγ,dβ)+max(dγ,dβ)min(dγ,dβ)}, (1.4)
    RRα(K)=γβE(K)1(dγdβ)α. (1.5)

    Whereas, the General Randic index defined as [24],

    Rα(K)=γβE(K)(dγdβ)α, (1.6)

    where α is an arbitrary real number.

    In 1998, the Atomic Bond Connectivity Index is defined as [6],

    ABC(K)=γβE(K)dγ+dβ2dγdβ. (1.7)

    Geometric-Arithmetic index is [30],

    GA(K)=γβE(K)2dγdβdγ+dβ. (1.8)

    In 2015, the General Version of Harmonic Index is defined [31],

    Hk(K)=γβE(K)(2dγ+dβ)k. (1.9)

    First and Second Gourava Indices were introduced by Kalli which is defined as, respectively [20],

    GO1(K)=γβE(K)[(dγ+dβ)+(dγdβ)], (1.10)
    GO2(K)=γβE(K)[(dγ+dβ)(dγdβ)]. (1.11)

    Kalli introduced the First and Second Hyper-Gourava Indices which is defined as, respectively [21],

    HGO1(K)=γβE(K)[(dγ+dβ)+(dγdβ)]2, (1.12)
    HGO2(K)=γβE(K)[(dγ+dβ)(dγdβ)]2. (1.13)

    At first, we obtain transformed pattern of molecular structures zigzag and triangular benzenoid named as T1 and T2. Next we define M-polynomial and topological indices of these networks by applying the stellation, medial and bounded dual. Further we define edge partition depending upon degree based vertices of T1 and T2 and then calculate the indices.

    Now we will construct the stellation, medial and bounded dual operations on simple and undirected zigzag benzenoid structure. We get a new transformed network (say) T1, shown in Figure 1 for n = 2. After this we will compute M-polynomial and degree based topological indices of our newly obtained network. Where, blue is stellation, red is medial, green is bounded dual operations applied on T1.

    Figure 1.  Transformed structure T1.

    Following Table 3 shows the types of edges and their count for network T1; n2. Now, we will calculate the M-polynomial and vertex degree based topological indices namely first Zagreb index, second Zagreb index, second modified index, symmetric division index, general Randic index, reciprocal general Randic index, atomic bond connectivity index, geometric arithmetic index, general version of harmonic index, first and second gourava indices, first and second hyper gourava indices.

    Let T1, be the transformed network then its M-polynomial is

    M(T1;x,y)=(8n+8)x3y4+8x3y7+(4n4)x3y8+(4n+4)x4y4+(8n4)x4y5+(8n4)x4y6+(4n2)x5y6+4x5y7+(8n8)x5y8+2x7y8+(2n3)x8y8.

    Proof:

    Using definition of M-polynomial and information from Table 3, we have

    M(T1;x,y)=abmabxayb=34m34x3y4+37m37x3y7+38m38x3y8+44m44x4y4+45m45x4y5+46m46x4y6+56m56x5y6+57m57x5y7+58m58x5y8+78m78x7y8+88m88x8y8=|E3,4|x3y4+|E3,7|x3y7+|E3,8|x3y8+|E4,4|x4y4+|E4,5|x4y5+|E4,6|x4y6+|E5,6|x5y6+|E5,7|x5y7+|E5,8|x5y8+|E7,8|x7y8+|E8,8|x8y8=(8n+8)x3y4+8x3y7+(4n4)x3y8+(4n+4)x4y4+(8n4)x4y5+(8n4)x4y6+(4n2)x5y6+4x5y7+(8n8)x5y8+2x7y8+(2n3)x8y8.
    Figure 2.  M-polynomial of T1.

    Let T1, be the transformed network and

    M(T1;x,y)=(8n+8)x3y4+8x3y7+(4n4)x3y8+(4n+4)x4y4+(8n4)x4y5+(8n4)x4y6+(4n2)x5y6+4x5y7+(8n8)x5y8+2x7y8+(2n3)x8y8,

    be its M-polynomial. Then, the first Zagreb index M1(T1), the second Zagreb index M2(T1), the second modified Zagreb index mM2(T1), the general Randic index Rα(T1), where α ϵ N, reciprocal general Randic index RRα(T1), where α ϵ N, and the symmetric division degree index SDD(T1) obtained from M-polynomial are as follows:

    M1(T1)=464n48,M2(T1)=1176n264,mM2(T1)=1112(n+1)+1130(n1)+1330(2n1)+164(2n3)+223420,Rα(T1)=12α(8n+8)+21α(8)+24α(4n4)+16α(4n+4)+20α(8n4)+24α(8n4)+30α(4n2)+35α(4)+40α(8n8)+56α(2)+64α(2n3),RRα(T1)=812α(n+1)+821α+424α(n1)+442α(n+1)+420α(2n1)+424α(2n1)+230α(2n1)+435α+840α(n1)+256α+164α(2n3),SDD(T1)=743(n+1)+89930(n1)+31415(2n1)+2(2n3)+14527420.

    Proof: Let f(x,y) = M(T1;x,y) be the M-polynomial of the transformed network T1. Then

    M(T1;x,y)=(8n+8)x3y4+8x3y7+(4n4)x3y8+(4n+4)x4y4+(8n4)x4y5+(8n4)x4y6+(4n2)x5y6+4x5y7+(8n8)x5y8+2x7y8+(2n3)x8y8.

    Now, the required partial derivatives and integrals are obtained as:

    By using the information given in Table 3 and formulas for Table 1;

    Dxf(x,y)=3(8n+8)x3y4+24x3y7+3(4n4)x3y8+4(4n+4)x4y4+4(8n4)x4y5+4(8n4)x4y6+5(4n2)x5y6+20x5y7+5(8n8)x5y8+14x7y8+8(2n3)x8y8,Dyf(x,y)=4(8n+8)x3y4+56x3y7+8(4n4)x3y8+4(4n+4)x4y4+5(8n4)x4y5+6(8n4)x4y6+6(4n2)x5y6+28x5y7+8(8n8)x5y8+16x7y8+8(2n3)x8y8,DxDyf(x,y)=12(8n+8)x3y4+168x3y7+24(4n4)x3y8+16(4n+4)x4y4+20(8n4)x4y5+24(8n4)x4y6+30(4n2)x5y6+140x5y7+40(8n8)x5y8+112x7y8+64(2n3)x8y8,SxSyf(x,y)=23(n+1)x3y4+821x3y7+16(n1)x3y8+14(n+1)x4y4+15(2n1)x4y5+16(2n1)x4y6+115(2n1)x5y6+435x5y7+15(n1)x5y8+128x7y8+164(2n3)x8y8,DαxDαyf(x,y)=12α(8n+8)x3y4+21α(8)x3y7+24α(4n4)x3y8+42α(4n+4)x4y4+20α(8n4)x4y5+24α(8n4)x4y6+30α(4n2)x5y6+35α(4)x5y7+40α(8n8)x5y8+56α(2)x7y8+46α(2n3)x8y8,SαxSαyf(x,y)=812α(n+1)x3y4+821αx3y7+424α(n1)x3y8+442α(n+1)x4y4+420α(2n1)x4y5+424α(2n1)x4y6+230α(2n1)x5y6+435αx5y7+840α(n1)x5y8+256αx7y8+164α(2n3)x8y8,SyDxf(x,y)=6(n+1)x3y4+247x3y7+32(n1)x3y8+4(n+1)x4y4+165(2n1)x4y5+83(2n1)x4y6+53(2n1)x5y6+207x5y7+5(n1)x5y8+74x7y8+(2n3)x8y8,SxDyf(x,y)=323(n+1)x3y4+563x3y7+323(n1)x3y8+4(n+1)x4y4+5(2n1)x4y5+6(2n1)x4y6+125(2n1)x5y6+285x5y7+645(n1)x5y8+167x7y8+(2n3)x8y8.
    Table 1.  Derivation of some degree-based topological indices from M-polynomial [3].
    Topological Index Derivation from M (K; x, y)
    First Zagreb (Dx+Dy)(M(K;x,y))|x=1=y (ii)
    Second Zagreb (DxDy)(M(K;x,y))|x=1=y (iii)
    Second Modified Zagreb (SxSy)(M(K;x,y))|x=1=y (iv)
    general Randic (DαxDαy)(M(K;x,y))|x=1=y (v)
    Reciprocal general Randic (SαxSαy)(M(K;x,y))|x=1=y (vi)
    Symmetric Division Index (SyDx)+(SxDy)(M(K;x,y))|x=1=y (vii)

     | Show Table
    DownLoad: CSV
    Table 2.  Planar and non-planar graph.
    Graph Planar/ NonPlanar
    St(G1,G2) Planar
    Md(G1,G2) Planar
    Bdu(G1,G2) NonPlanar
    T1 NonPlanar
    T2 NonPlanar

     | Show Table
    DownLoad: CSV

    Consequently,

    M1(T1)=(Dx+Dy)f(x,y)|x=1=y=464n48,M2(T1)=DxDyf(x,y)|x=1=y=1176n264,mM2(T1)=SxSyf(x,y)|x=1=y=1112(n+1)+1130(n1)+1330(2n1)+164(2n3)+223420,Rα(T1)=DαxDαyf(x,y)|x=1=y=12α(8n+8)+(21)α8+24α(4n4)+16α(4n+4)+20α(8n4)+24α(8n4)+30α(4n2)+(35)α4+40α(8n8)+(56)α2+64α(2n3),RRα(T1)=SαxSαyf(x,y)|x=1=y=812α(n+1)+821α+424α(n1)+442α(n+1)+420α(2n1)+424α(2n1)+230α(2n1)+435α+840α(n1)+256α+164α(2n3),SDD(T1)=(SyDx+SxDy)(x,y)|x=1=y=743(n+1)+89930(n1)+31415(2n1)+2(2n3)+14527420.

    For T1, the Atomic Bond Connectivity, Geometric Arithematic Index and General Harmonic Index are as follows, respectively.

    1)  ABC(T1)=2n6+(n+1)4153+(14n+11)1456+(n1)21105+(2n1)(275+43+65)+164221+18214,2)  GA(T1)=(n+1)(3237+4)+(n1)321013+(32n21)8655+(2n1)(1659+43011)+(2n3)+8215+2353+81415,3)  Hk(T1)=(8n+8)(27)k+(8n+4)(15)k+(4n4)(211)k+(4n+4)(14)k+(8n4)(29)k+(4n2)(211)k+4(16)k+(8n8)(213)k+2(215)k+(2n3)(18)k.

    Proof:

    1). According to Eq (1.7)

    ABC(T1)=γβE(K)dγ+dβ2dγdβ.

    By using the information given in Table 3.

    =(8n+8)(3+423×4)+8(3+723×7)+(4n4)(3+823×8)+(4n+4)(4+424×4)+(8n4)(4+524×5)+(8n4)(4+624×6)+(4n2)(5+625×6)+4(5+725×7)+(8n8)(5+825×8)+2(7+827×8)+(2n3)(8+828×8)=2n6+(n+1)4153+(14n+11)1456+(n1)21105+(2n1)(275+43+65)+164221+18214.
    Table 3.  Types and count of edges for T1.
    Types of edges Count of edges
    (3,4) 8n+8
    (3,7) 8
    (3,8) 4n4
    (4,4) 4n+4
    (4,5) 8n4
    (4,6) 8n4
    (5,6) 4n2
    (5,7) 4
    (5,8) 8n8
    (7,8) 2
    (8,8) 2n3

     | Show Table
    DownLoad: CSV

    2). According to Eq (1.8)

    GA(T1)=γβE(K)2dγdβdγ+dβ.

    By using the information given in Table 3.

    =(8n+8)(23×43+4)+8(23×73+7)+(4n4)(23×83+8)+(4n+4)(24×44+4)+(8n4)(24×54+5)+(8n4)(24×64+6)+(4n2)(25×65+6)+4(25×75+7)+(8n8)(25×85+8)+2(27×87+8)+(2n3)(28×88+8)=(n+1)(3237+4)+(n1)321013+(32n21)8655+(2n1)(1659+43011)+(2n3)+8215+2353+81415.

    3). According to Eq (1.9)

    Hk(T1)=γβE(K)(2dγ+dβ)k.

    By using the information given in Table 3.

    =(8n+8)(23+4)k+8(23+7)k+(4n4)(23+8)k+(4n+4)(24+4)k+(8n4)(24+5)k+(8n4)(24+6)k+(4n2)(25+6)k+4(25+7)k+(8n8)(25+8)k+2(27+8)k+(2n3)(28+8)k=(8n+8)(27)k+(8n+4)(15)k+(4n4)(211)k+(4n+4)(14)k+(8n4)(29)k+(4n2)(211)k+4(16)k+(8n8)(213)k+2(215)k+(2n3)(18)k.

    For T1, the First, Second Gourava Indices and the First, Second Hyper Gourava Indices are as follows, respectively.

    1)  GO1(T1)=1640n312,2)  GO2(T1)=13128n4404,3)  HGO1(T1)=68064n26124,4)  HGO2(T1)=5816720n3573928.

    Proof:

    1). According to Eq (1.10)

       GO1(T1)=γβE(K)[(dγ+dβ)+(dγdβ)].

    By using the information given in Table 3.

    =(8n+8)[(3+4)+(3×4)]+8[(3+7)+(3×7)]+(4n4)[(3+8)+(3×8)]+(4n+4)[(4+4)+(4×4)]+(8n4)[(4+5)+(4×5)]+(8n4)[(4+6)+(4×6)]+(4n2)[(5+6)+(5×6)]+4[(5+7)+(5×7)]+(8n8)[(5+8)+(5×8)]+2[(7+8)+(7×8)]+(2n3)[(8+8)+(8×8)]=1640n312.

    2). According to Eq (1.11)

       GO2(T1)=γβE(K)[(dγ+dβ)(dγdβ)].

    By using the information given in Table 3.

    =(8n+8)[(3+4)(3×4)]+8[(3+7)(3×7)]+(4n4)[(3+8)(3×8)]+(4n+4)[(4+4)(4×4)]+(8n4)[(4+5)(4×5)]+(8n4)[(4+6)(4×6)]+(4n2)[(5+6)(5×6)]+4[(5+7)(5×7)]+(8n8)[(5+8)(5×8)]+2[(7+8)(7×8)]+(2n3)[(8+8)(8×8)]=13128n4404.

    3). According to Eq (1.12)

       HGO1(T1)=γβE(K)[(dγ+dβ)+(dγdβ)]2.

    By using the information given in Table 3.

    =(8n+8)[(3+4)+(3×4)]2+8[(3+7)+(3×7)]2+(4n4)[(3+8)+(3×8)]2+(4n+4)[(4+4)+(4×4)]2+(8n4)[(4+5)+(4×5)]2+(8n4)[(4+6)+(4×6)]2+(4n2)[(5+6)+(5×6)]2+4[(5+7)+(5×7)]2+(8n8)[(5+8)+(5×8)]2+2[(7+8)+(7×8)]2+(2n3)[(8+8)+(8×8)]2=68064n26124.

    4). According to Eq (1.13)

       HGO2(T1)=γβE(K)[(dγ+dβ)(dγdβ)]2.

    By using the information given in Table 3.

    =(8n+8)[(3+4)(3×4)]2+8[(3+7)(3×7)]2+(4n4)[(3+8)(3×8)]2+(4n+4)[(4+4)(4×4)]2+(8n4)[(4+5)(4×5)]2+(8n4)[(4+6)(4×6)]2+(4n2)[(5+6)(5×6)]2+4[(5+7)(5×7)]2+(8n8)[(5+8)(5×8)]2+2[(7+8)(7×8)]2+(2n3)[(8+8)(8×8)]2=5816720n3573928.

    Now we will construct the stellation, medial and bounded dual operations on simple and undirected triangular benzenoid structure. We get a new transformed network (say) T2, shown in Figure 3 for n = 5. After this we will compute M-polynomial and degree based topological indices of our newly obtained network. Where, blue is stellation, red is medial, green is bounded dual operations applied on T2.

    Figure 3.  Transformed structure T2.

    Following Table 4 shows the types of edges and their count for network T2; n5. Now, we will calculate the different M-polynomial and vertex degree based topological indices namely first Zagreb index, second Zagreb index, second modified index, symmetric division index, general Randic index, reciprocal general Randic index, atomic bond connectivity index, geometric arithmetic index, general version of harmonic index, first and second gourava indices, first and second hyper gourava indices.

    Table 4.  Types and count of edges for T2.
    Types of edges Count of edges
    (3,4) 6n+6
    (3,8) 9
    (3,10) 3n6
    (4,4) 3n+3
    (4,5) 6n6
    (4,6) 6n6
    (5,6) 3n3
    (5,8) 6
    (5,10) 6n12
    (6,6) 6(n1)2
    (6,8) 3
    (6,10) 9n18
    (6,12) 6[(n(n1))+(n(n2))+...
    +(n4)+(n3)]
    (8,10) 6
    (10,10) 3n6
    (10,12) 6n18
    (12,12) 3[(n4)+(n5)+...
    +(n(n1))]

     | Show Table
    DownLoad: CSV

    Let T2, be the transformed network then its M-polynomial is

    M(T2;x,y)=(6n+6)x3y4+9x3y8+(3n6)x3y10+(3n+3)x4y4+(6n6)x4y5+(6n6)x4y6+(3n3)x5y6+6x5y8+(6n12)x5y10+6(n1)2x6y6+3x6y8+(9n18)x6y10+6[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+6x8y10+(3n6)x10y10+(6n18)x10y12+3[(n4)+(n5)+...+(n(n1))]x12y12.

    Proof: Using definition of M-polynomial and information from Table 4, we have

    M(T2;x,y)=abmabxayb=34m34x3y4+38m38x3y8+310m3 10x3y10+44m44x4y4+45m45x4y5+46m46x4y6+56m56x5y6+58m58x5y8+510m5 10x5y10+66m66x6y6+68m68x6y8+610m6 10x6y10+612m6 12x6y12+810m8 10x8y10+1010m10 10x10y10+1012m10 12x10y12+1212m12 12x12y12=|E3,4|x3y4+|E3,8|x3y8+|E3,10|x3y10+|E4,4|x4y4+|E4,5|x4y5+|E4,6|x4y6+|E5,6|x5y6+|E5,8|x5y8+|E5,10|x5y10+|E6,6|x6y6+|E6,8|x6y8+|E6,10|x6y10+|E6,12|x6y12+|E8,10|x8y10+|E10,10|x10y10+|E10,12|x10y12+|E12,12|x12y12=(6n+6)x3y4+9x3y8+(3n6)x3y10+(3n+3)x4y4+(6n6)x4y5+(6n6)x4y6+(3n3)x5y6+6x5y8+(6n12)x5y10+6(n1)2x6y6+3x6y8+(9n18)x6y10+6[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+6x8y10+(3n6)x10y10+(6n18)x10y12+3[(n4)+(n5)+...+(n(n1))]x12y12.
    Figure 4.  M-polynomial of T2 for n = 6.
    Figure 5.  M-polynomial of T2.

    Let T2, be the transformed network and

    M(T2;x,y)=(6n+6)x3y4+9x3y8+(3n6)x3y10+(3n+3)x4y4+(6n6)x4y5+(6n6)x4y6+(3n3)x5y6+6x5y8+(6n12)x5y10+6(n1)2x6y6+3x6y8+(9n18)x6y10+6[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+6x8y10+(3n6)x10y10+(6n18)x10y12+3[(n4)+(n5)+...+(n(n1))]x12y12,

    be its M-polynomial. Then, the first Zagreb index M1(T2), the second Zagreb index M2(T2), the second modified Zagreb mM2(T2), the general Randic index Rα(T2), where α ϵ N, reciprocal general Randic index RRα(T2), where α ϵ N, and the symmetric division degree index SDD(T2) obtained from M-polynomial are as follows:

    M1(T2)=678n816+72(n1)2+108[(n(n1))+(n(n2))+...+(n4)+(n3)]+72[(n4)+(n5)+...+(n(n1))],M2(T2)=2424n3774+216(n1)2+432[(n(n1))+(n(n2))+...+(n4)+(n3)]+432[(n4)+(n5)+...+(n(n1))],mM2(T2)=1116(n+1)+25(n2)+1320(n1)+120(n3)+5380+16(n1)2+112[(n(n1))+(n(n2))+...+(n4)+(n3)]+148[(n4)+(n5)+...+(n(n1))],Rα(T2)=12α(6n+6)+24α(9)+30α(3n6)+42α(3n+3)+20α(6n6)+24α(6n6)+30α(3n3)+40α(6)+50α(6n12)+6(n1)2(36)α+48α(3)+60α(9n18)+72α[(n(n1))+(n(n2))+...+(n4)+(n3)]6+80α(6)+100α(3n6)+120α(6n18)+144α[(n4)+(n5)+...+(n(n1))]3,RRα(T2)=612α(n+1)+924α+330α(n2)+342α(n+1)+620α(n1)+624α(n1)+330α(n1)+640α+650α(n2)+636α(n1)2+348α+960α(n2)+680α+3100α(n2)+172α[(n(n1))+(n(n2))+...+(n4)+(n3)]6+6120α(n3)+1144α[(n4)+(n5)+...+(n(n1))]3,SDD(T2)=372(n+1)+1575(n1)+52310(n2)+615(n3)+237140+12(n1)2+15[(n(n1))+(n(n2))+...+(n4)+(n3)]+6[(n4)+(n5)+...+(n(n1))].

    Proof: Let f(x,y) = M(T2;x,y) be the M-polynomial of the transformed network T2. Then

    M(T2;x,y)=(6n+6)x3y4+9x3y8+(3n6)x3y10+(3n+3)x4y4+(6n6)x4y5+(6n6)x4y6+(3n3)x5y6+6x5y8+(6n12)x5y10+6(n1)2x6y6+3x6y8+(9n18)x6y10+6[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+6x8y10+(3n6)x10y10+(6n18)x10y12+3[(n4)+(n5)+...+(n(n1))]x12y12.

    Now, the required partial derivatives and integrals are obtained.

    By using the information given in Table 4 and formulas for Table 1:

    Dxf(x,y)=3(6n+6)x3y4+27x3y8+3(3n6)x3y10+4(3n+3)x4y4+4(6n6)x4y5+4(6n6)x4y6+5(3n3)x5y6+30x5y8+5(6n12)x5y10+36(n1)2x6y6+18x6y8+6(9n18)x6y10+36[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+48x8y10+10(3n6)x10y10+10(6n18)x10y12+36[(n4)+(n5)+...+(n(n1))]x12y12,Dyf(x,y)=4(6n+6)x3y4+72x3y8+10(3n6)x3y10+4(3n+3)x4y4+5(6n6)x4y5+6(6n6)x4y6+6(3n3)x5y6+48x5y8+10(6n12)x5y10+36(n1)2x6y6+24x6y8+10(9n18)x6y10+72[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+60x8y10+10(3n6)x10y10+12(6n18)x10y12+36[(n4)+(n5)+...+(n(n1))]x12y12,DxDyf(x,y)=12(6n+6)x3y4+216x3y8+30(3n6)x3y10+16(3n+3)x4y4+20(6n6)x4y5+24(6n6)x4y6+30(3n3)x5y6+240x5y8+50(6n12)x5y10+216(n1)2x6y6+144x6y8+60(9n18)x6y10+432[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+480x8y10+100(3n6)x10y10+120(6n18)x10y12+432[(n4)+(n5)+...+(n(n1))]x12y12,SxSyf(x,y)=12(n+1)x3y4+38x3y8+110(n2)x3y10+316(n+1)x4y4+310(n1)x4y5+14(n1)x4y6+110(n1)x5y6+320x5y8+325(n2)x5y10+16(n1)2x6y6+116x6y8+320(n2)x6y10+112[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+340x8y10+3100(n2)x10y10+120(n3)x10y12+148[(n4)+(n5)+...+(n(n1))]x12y12,DαxDαyf(x,y)=12α(6n+6)x3y4+24α(9)x3y8+30α(3n6)x3y10+42α(3n+3)x4y4+20α(6n6)x4y5+24α(6n6)x4y6+30α(3n3)x5y6+40α(6)x5y8+50α(6n12)x5y10+(36)α(n1)26x6y6+48α(3)x6y8+60α(9n18)x6y10+72α[(n(n1))+(n(n2))+...+(n4)+(n3)]6x6y12+80α(6)x8y10+100α(3n6)x10y10+120α(6n18)x10y12+144α[(n4)+(n5)+...+(n(n1))]3x12y12,SαxSαyf(x,y)=612α(n+1)x3y4+924αx3y8+330α(n2)x3y10+342α(n+1)x4y4+620α(n1)x4y5+624α(n1)x4y6+330α(n1(n1)x5y6+640αx5y8+650α(n2)x5y10+636α(n1)2x6y6+348αx6y8+960α(n2)x6y10+172α[(n(n1))+(n(n2))+...+(n4)+(n3)]6x6y12+680αx8y10+3100α(n2)x10y10+6120α(n3)x10y12+1144α[(n4)+(n5)+...+(n(n1))]3x12y12,SyDxf(x,y)=92(n+1)x3y4+278x3y8+910(n2)x3y10+3(n+1)x4y4+245(n1)x4y5+4(n1)x4y6+52(n1)x5y6+154x5y8+3(n2)x5y10+6(n1)2x6y6+94x6y8+275(n2)x6y10+3[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+245x8y10+3(n2)x10y10+5(n3)x10y12+3[(n4)+(n5)+...+(n(n1))]x12y12,SxDyf(x,y)=8(n+1)x3y4+24x3y8+10(n2)x3y10+3(n+1)x4y4+152(n1)x4y5+9(n1)x4y6+185(n1)x5y6+485x5y8+12(n2)x5y10+6(n1)2x6y6+4x6y8+15(n2)x6y10+12[(n(n1))+(n(n2))+...+(n4)+(n3)]x6y12+152x8y10+3(n2)x10y10+365(n3)x10y12+3[(n4)+(n5)+...+(n(n1))]x12y12.

    Consequently,

    M1(T2)=(Dx+Dy)f(x,y)|x=1=y=678n816+72(n1)2+108[(n(n1))+(n(n2))+...+(n4)+(n3)]+72[(n4)+(n5)+...+(n(n1))],M2(T2)=DxDyf(x,y)|x=1=y=2424n3774+216(n1)2+432[(n(n1))+(n(n2))+...+(n4)+(n3)]+432[(n4)+(n5)+...+(n(n1))],mM2(T2)=SxSyf(x,y)|x=1=y=1116(n+1)+25(n2)+1320(n1)+120(n3)+710+16(n1)2+112[(n(n1))+(n(n2))+...+(n4)+(n3)]+148[(n4)+(n5)+...+(n(n1))],Rα(T2)=DαxDαyf(x,y)|x=1=y=12α(6n+6)+24α(9)+30α(3n6)+42α(3n+3)+20α(6n6)+24α(6n6)+30α(3n3)+40α(6)+50α(6n12)+6(n1)2(36)α+48α(3)+60α(9n18)+72α[(n(n1))+(n(n2))+...+(n4)+(n3)]6+80α(6)+100α(3n6)+120α(6n18)+144α[(n4)+(n5)+...+(n(n1))]3,RRα(T2)=SαxSαyf(x,y)|x=1=y=612α(n+1)+924α+330α(n2)+342α(n+1)+620α(n1)+624α(n1)+330α(n1)+640α+650α(n2)+636α(n1)2+348α+960α(n2)+680α+3100α(n2)+172α[(n(n1))+(n(n2))+...+(n4)+(n3)]6+6120α(n3)+1144α[(n4)+(n5)+...+(n(n1))]3,SDD(T2)=(SyDx+SxDy)(x,y)|x=1=y=372(n+1)+1575(n1)+52310(n2)+615(n3)+237140+12(n1)2+15[(n(n1))+(n(n2))+...+(n4)+(n3)]+6[(n4)+(n5)+...+(n(n1))].

    For T2, the Atomic Bond Connectivity, Geometric Arithmetic Index and General Harmonic Index are as follows, respectively.

    1)    ABC(T2)=(7n)64+(n+1)15+(n1)(375+23+3310)(n2)(33010+3265+321010+9210)+311010+32+65+(n1)210+[(n(n1))+(n(n2))+...+(n4)+(n3)]22+[(n4)+(n5)+...+(n(n1))]224,2)    GA(T2)=(24n+36)37+(132n+48)655+(50n113)630143+3(n+1)+(8n)53+(n2)(42+9154+3)+241013+6(n1)2+[(n(n1))+(n(n2))+...+(n4)+(n3)]42+3[(n4)+(n5)+...+(n(n1))],3)   Hk(T2)=(6n+6)(27)k+9(211)k+(3n6)(213)k+(3n+3)(14)k+(6n6)(29)k+(6n6)(15)k+(3n3)(211)k+6(213)k+(6n12)(215)k+6(n1)2)(16)k+3(17)k+(9n18)(18)k+6[(n(n1))+(n(n2))+...+(n4)+(n3)](19)k+6(19)k+(3n6)(110)k+(6n18)(111)k+3[(n4)+(n5)+...+(n(n1))](112)k.

    Proof: Using Eqs 1.7–1.9 and Table 4, we get the results 1–3.

    For T2, the First, Second Gourava Indices and the First, Second Hyper Gourava Indices are as follows, respectively.

    1)   GO1(T2)=3102n4590+288(n1)2+540[(n(n1))+(n(n2))+...+(n4)+(n3)]+504[(n4)+(n5)+...+(n(n1))],2)   GO2(T2)=40548n74610+2592(n1)2+7776[(n(n1))+(n(n2))+...+(n4)+(n3)]+10368[(n4)+(n5)+...+(n(n1))],3)   HGO1(T2)=267984n531210+13824(n1)2+48600[(n(n1))+(n(n2))+...+(n4)+(n3)]+84672[(n4)+(n5)+...+(n(n1))],4)   HGO2(T2)=66901488n158433396+1119744(n1)2+10077696[(n(n1))+(n(n2))+...+(n4)+(n3)]+35831808[(n4)+(n5)+...+(n(n1))].

    Proof: Using Eqs 1.10–1.13 and Table 4 we get the above results 1–4.

    In this paper, we defined M-polynomial of the transformed zigzag benzenoid and transformed triangular benzenoid structures by applying stellation, medial and bounded dual operations to get networks named as T1 and T2. With the help of M-polynomial, we computed certain degree-based topological indices such as first Zagreb index, second Zagreb index, second modified Zagreb index, general Randic index, reciprocal general Randic index, symmetric division degree index. We also computed atomic bound connectivity index, geometric arithmetic index, general harmonic index, first and second gourava indices, first and second hyper gourava indices. M-polynomial is used to calculate the certain degree based topological indices as a latest developed instrument in the chemical graph theory. In future, we can compute other indices on these structures and some additional transformed structures can be studied for a variety of topological indices to have an insight about their properties.

    This work was supported by the Key teaching research project of quality engineering in Colleges and universities in Anhui Province. Anhui Vocational college of Electronics and Information Technology Guangzhou Zhuoya Education Investment Co., Ltd. Practical Education Base (subject No: 2020sjjd093). The authors are very thankful for this research funding. We are also very grateful to the reviewers for their valuable suggestions.

    The authors declare no conflict of interest.



    [1] F. Tisseur, K. Meerbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001), 235–286. https://doi.org/10.1137/S0036144500381988 doi: 10.1137/S0036144500381988
    [2] B. N. Datta, D. R. Sarkissian, Feedback control in distributed parameter gyroscopic systems: a solution of the partial eigenvalue assignment problem, Mech. Syst. Sig. Process., 16 (2001), 3–17. https://doi.org/10.1006/mssp.2001.1444 doi: 10.1006/mssp.2001.1444
    [3] D. Richiedei, I. Tamellin, A. Trivisani, Unit-rank output feedback control for antiresonance assignment in lightweight systems, Mech. Syst. Sig. Process., 164 (2022), 108250. https://doi.org/10.1016/j.ymssp.2021.108250 doi: 10.1016/j.ymssp.2021.108250
    [4] T. A. M. Euzébio, A. S. Yamashita, T. V. B. Pinto, P. R. Barros, SISO approaches for linear programming based methods for tuning decentralized PID controllers, J. Process Contr., 94 (2020), 75–96. https://doi.org/10.1016/j.jprocont.2020.08.004 doi: 10.1016/j.jprocont.2020.08.004
    [5] Q. Chen, D. Q. Zhu, Z. B. Liu, Attitude control of aerial and underwater vehicles using single-input FUZZY P+ID controller, Appl. Ocean Res., 107 (2021), 102460. https://doi.org/10.1016/j.apor.2020.102460 doi: 10.1016/j.apor.2020.102460
    [6] G. V. Smirnov, Y. Mashtakov, M. Ovchinnikov, S. Shestakov, A. F. B. A. Prado, Tetrahedron formation of nanosatellites with single-input control, Astrophys. Space Sci., 363 (2018), 180. https://doi.org/10.1007/s10509-018-3400-4 doi: 10.1007/s10509-018-3400-4
    [7] N. J. B. Dantas, C. E. T. Dórea, J. M. Araújo, Design of rank-one modification feedback controllers for second-order systems with time delay using frequency response methods, Mech. Syst. Sig. Process., 137 (2020), 106404. https://doi.org/10.1016/j.ymssp.2019.106404 doi: 10.1016/j.ymssp.2019.106404
    [8] N. J. B. Dantas, C. E. T. Dorea, J. M. Araujo, Partial pole assignment using rank-one control and receptance in second-order systems with time delay, Meccanica, 56 (2021), 287–302. https://doi.org/10.1007/s11012-020-01289-w doi: 10.1007/s11012-020-01289-w
    [9] K. V. Singh, Y. M. Ram, Dynamic absorption by passive and active control, J. Vib. Acoust. Trans., 122 (2000), 429–433. https://doi.org/10.1115/1.1311792 doi: 10.1115/1.1311792
    [10] K. V. Singh, B. N. Datta, M. Tyagi, Closed form control gains for zero assignment in the time delayed system, J. Comput. Nonlinear Dyn., 6 (2011), 021002. https://doi.org/10.1115/1.4002340 doi: 10.1115/1.4002340
    [11] Y. M. Ram, J. E. Mottershead, M. G. Tehrani, Partial pole placement with time delay in structures using the receptance and the system matrices, Linear Algebra Appl., 434 (2011), 1689–1696. https://doi.org/10.1016/j.laa.2010.07.014 doi: 10.1016/j.laa.2010.07.014
    [12] Y. Liang, H. Yamaura, H. J. Ouyang, Active assignment of eigenvalues and eigen-sensitivities for robust stabilization of friction-induced vibration, Mech. Syst. Sig. Process., 90 (2017), 254–267. https://doi.org/10.1016/j.ymssp.2016.12.011 doi: 10.1016/j.ymssp.2016.12.011
    [13] J. Q. Teoh, M. G. Tehrani, N. S. Ferguson, S. J. Elliott, Eigenvalue sensitivity minimisation for robust pole placement by the receptance method, Mech. Syst. Sig. Process., 173 (2022), 108974. https://doi.org/10.1016/j.ymssp.2022.108974 doi: 10.1016/j.ymssp.2022.108974
    [14] W. W. Hager, Updating the inverse of a matrix, SIAM Rev., 31 (1989), 221–239. https://doi.org/10.1137/1031049 doi: 10.1137/1031049
    [15] G. H. Golub, C. F. L. Van, Matrix computations, Baltimore: Johns Hopkins University Press, 1983.
    [16] Y. Liang, H. J. Ouyang, H. Yamaura, Active partial eigenvalue assignment for friction-induced vibration using receptance method, J. Phy.: Conf. Ser., 744 (2016), 012008. https://doi.org/10.1088/1742-6596/744/1/012008 doi: 10.1088/1742-6596/744/1/012008
    [17] Y. M. Ram, J. E. Mottershead, Receptance method in active vibration control, AIAA J., 45 (2007), 562–567. https://doi.org/10.2514/1.24349 doi: 10.2514/1.24349
    [18] Y. M. Ram, J. E. Mottershead, Multiple-input active vibration control by partial pole placement using the method of receptances, Mech. Syst. Sig. Process., 40 (2013), 727–735. https://doi.org/10.1016/j.ymssp.2013.06.008 doi: 10.1016/j.ymssp.2013.06.008
    [19] S. K. Zhang, H. J. Ouyang, Receptance-based partial eigenstructure assignment by state feedback control, Mech. Syst. Sig. Process., 168 (2022), 108728. https://doi.org/10.1016/j.ymssp.2021.108728 doi: 10.1016/j.ymssp.2021.108728
    [20] R. Belotti, D. Richiedei, Pole assignment in vibrating systems with time delay: an approach embedding an a-priori stability condition based on Linear Matrix Inequality, Mech. Syst. Sig. Process., 137 (2020), 106396. https://doi.org/10.1016/j.ymssp.2019.106396 doi: 10.1016/j.ymssp.2019.106396
    [21] D. Richiedei, I. Tamellin, A. Trivisani, Pole-zero assignment by the receptance method: multi-input active vibration control, Mech. Syst. Sig. Process., 172 (2022), 108976. https://doi.org/10.1016/j.ymssp.2022.108976 doi: 10.1016/j.ymssp.2022.108976
    [22] H. Liu, B. X. He, X. P. Chen, Partial eigenvalue assignment for undamped gyroscopic systems in control, E. Asian J. Appl. Math., 9 (2019), 831–848. https://doi.org/10.4208/eajam.040718.091218 doi: 10.4208/eajam.040718.091218
    [23] B. N. Datta, S. Elhay, Y. M. Ram, Orthogonality and partial pole assignment for the symmetric definite quadratic pencil, Linear Algebra Appl., 257 (1997), 29–48. https://doi.org/10.1016/S0024-3795(96)00036-5 doi: 10.1016/S0024-3795(96)00036-5
    [24] H. Liu, Y. X. Yuan, A multi-step method for partial quadratic pole assignment problem with time delay, Appl. Math. Comput., 283 (2016), 29–35. https://doi.org/10.1016/j.amc.2016.02.012 doi: 10.1016/j.amc.2016.02.012
    [25] S. Brahma, B. N. Datta, An optimization approach for minimum norm and robust partial quadratic eigenvalue assignment problems for vibrating structures, J. Sound Vib., 324 (2009), 471–489. https://doi.org/10.1016/j.jsv.2009.02.020 doi: 10.1016/j.jsv.2009.02.020
    [26] Z. J. Bai, J. K. Yang, B. N. Datta, Robust partial quadratic eigenvalue assignment with time delay using the receptance and the system matrices, J. Sound Vib., 384 (2016), 1–14. https://doi.org/10.1016/j.jsv.2016.08.002 doi: 10.1016/j.jsv.2016.08.002
    [27] M. Lu, Z. J. Bai, A modified optimization method for robust partial quadratic eigenvalue assignment using receptances and system matrices, Mech. Syst. Sig. Process., 159 (2021), 73–92. https://doi.org/10.1016/j.apnum.2020.08.018 doi: 10.1016/j.apnum.2020.08.018
    [28] M. G. Tehrani, J. E. Mottershead, A. T. Shenton, Y. M. Ram, Robust pole placement in structures by the method of receptances, Mech. Syst. Sig. Process., 25 (2011), 112–122. https://doi.org/10.1016/j.ymssp.2010.04.005 doi: 10.1016/j.ymssp.2010.04.005
    [29] M. Chen, H. Q. Xie, A receptance method for partial quadratic pole assignment of asymmetric systems, Mech. Syst. Sig. Process., 165 (2022), 108348. https://doi.org/10.1016/j.ymssp.2021.108348 doi: 10.1016/j.ymssp.2021.108348
    [30] L. L. Jia, Robust pole assignment with part parameter perturbation system, Harbin: Harbin Institute of Technology, 2009.
    [31] D. R. Sarkissian, Theory and computations of partial eigenvalue and eigenstructure assignment problems in matrix second-order and distributed-parameter systems, Dekalb: Northern Illinois University, 2001.
    [32] P. Ariyatanapol, Y. P. Xiong, H. J. Ouyang, Partial pole assignment with time delays for asymmetric systems, Acta Mech., 229 (2018), 2619–2629. https://doi.org/10.1007/s00707-018-2118-2 doi: 10.1007/s00707-018-2118-2
    [33] D. J. Ewins, Model testing: theory, practice and application, 2 Eds., British: Research Studies Press, 2000.
    [34] S. Y. Yoon, Z. L. Lin, E. A. Paul, Control of surge in centrifugal compressors by active magnetic bearings: theory and implementation, London: Springer-Verlag, 2013. https://doi.org/10.1007/978-1-4471-4240-9
  • This article has been cited by:

    1. Deeba Afzal, Farkhanda Afzal, Sabir Hussain, Faryal Chaudhry, Dhana Kumari Thapa, Gohar Ali, Investigation on Boron Alpha Nanotube by Studying Their M-Polynomial and Topological Indices, 2022, 2022, 2314-4785, 1, 10.1155/2022/6136168
    2. Jia-Bao Liu, Hifza Iqbal, Khurram Shahzad, Topological Properties of Concealed Non-Kekulean Benzenoid Hydrocarbon, 2023, 43, 1040-6638, 1776, 10.1080/10406638.2022.2039230
    3. Kamel Jebreen, Hifza Iqbal, Muhammad Haroon Aftab, Iram Yaqoob, Mohammed Issa Sowaity, Amjad Barham, Study of eccentricity based topological indices for benzenoid structure, 2023, 45, 10269185, 221, 10.1016/j.sajce.2023.05.010
    4. Claudio Rocco, Jose A. Moronta, A Novel Perspective for Hosoya and M Polynomials for Analyzing Electric Power Network Topology, 2024, 1556-5068, 10.2139/ssrn.4806323
    5. Hifza Iqbal, Muhammad Haroon Aftab, Ali Akgul, Zeeshan Saleem Mufti, Iram Yaqoob, Mustafa Bayram, Muhammad Bilal Riaz, Further study of eccentricity based indices for benzenoid hourglass network, 2023, 9, 24058440, e16956, 10.1016/j.heliyon.2023.e16956
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(663) PDF downloads(24) Cited by(0)

Figures and Tables

Figures(8)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog