The main goal of this paper is to define the concept of metallic deformation through a relation between the metallic structure and paracontact structure on an almost paracontact para-Norden manifold. A Riemannian connection is obtained on a metallically deformed para-Sasaki-like para-Norden manifold. A $ \varphi $-connection is obtained via the Riemannian connection on a metallically deformed para-Sasaki-like para-Norden manifold. The curvature tensors, Ricci tensors, scalar curvatures, and $ \ast $-scalar curvatures are investigated with respect to the Riemannian connection and the $ \varphi $-connection. Finally, an example is given of a metallically deformed $ 3 $-dimensional para-Sasaki-like para-Norden manifold.
Citation: Rabia Cakan Akpınar, Esen Kemer Kansu. Metallic deformation on para-Sasaki-like para-Norden manifold[J]. AIMS Mathematics, 2024, 9(7): 19125-19136. doi: 10.3934/math.2024932
The main goal of this paper is to define the concept of metallic deformation through a relation between the metallic structure and paracontact structure on an almost paracontact para-Norden manifold. A Riemannian connection is obtained on a metallically deformed para-Sasaki-like para-Norden manifold. A $ \varphi $-connection is obtained via the Riemannian connection on a metallically deformed para-Sasaki-like para-Norden manifold. The curvature tensors, Ricci tensors, scalar curvatures, and $ \ast $-scalar curvatures are investigated with respect to the Riemannian connection and the $ \varphi $-connection. Finally, an example is given of a metallically deformed $ 3 $-dimensional para-Sasaki-like para-Norden manifold.
[1] | M. Manev, M. Staikova, On almost paracontact Riemannian manifolds of type (n, n), J. Geom., 72 (2001), 108–114. https://doi.org/10.1007/s00022-001-8572-2 doi: 10.1007/s00022-001-8572-2 |
[2] | M. Manev, V. Tavkova, On almost paracontact almost paracomplex Riemannian manifolds, arXiv: 1805.11120, 2018. https://doi.org/10.48550/arXiv.1805.11120 |
[3] | S. Ivanov, H. Manev, M. Manev, Para-Sasaki-like Riemannian manifolds and new Einstein metrics, RACSAM Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat., 115 (2021), 112. https://doi.org/10.1007/s13398-021-01053-z doi: 10.1007/s13398-021-01053-z |
[4] | H. Manev, M. Manev, Para-Ricci-like solitons on Riemannian manifolds with almost paracontact structure and almost paracomplex structure, Mathematics, 9 (2021), 1704. https://doi.org/10.3390/math9141704 doi: 10.3390/math9141704 |
[5] | H. Manev, Para-Ricci-like solitons with vertical potential on para-Sasaki-like Riemannian $\prod-$manifolds, Symmetry, 13 (2021), 2267. https://doi.org/10.3390/sym13122267 doi: 10.3390/sym13122267 |
[6] | M. Manev, V. Tavkova, Lie groups as 3-dimensional almost paracontact almost paracomplex Riemannian manifolds, J. Geom., 110 (2019), 43. https://doi.org/10.1007/s00022-019-0499-6 doi: 10.1007/s00022-019-0499-6 |
[7] | V. W. Spinadel, The metallic means family and multifractal spectra, Nonlinear Anal., 36 (1999), 721–745. https://doi.org/10.1016/S0362-546X(98)00123-0 doi: 10.1016/S0362-546X(98)00123-0 |
[8] | V. W. Spinadel, The metallic means family and forbidden symmetries, Int. Math. J., 2 (2002), 279–288. |
[9] | C. Hretcanu, M. Crasmareanu, Metallic structures on Riemannian manifolds, Rev. Un. Mat. Argentina, 54 (2013), 15–27. |
[10] | A. Gezer, C. Karaman, On metallic Riemannian structures, Turk. J. Math., 39 (2015), 954–962. https://doi.org/10.3906/mat-1504-50 doi: 10.3906/mat-1504-50 |
[11] | S. Turanli, A. Gezer, H. Cakicioglu, Metallic Kähler and nearly metallic Kähler manifolds, Int. J. Geom. Methods Mod. Phys., 18 (2021), 2150146. https://doi.org/10.1142/S0219887821501462 doi: 10.1142/S0219887821501462 |
[12] | H. Cayir, Operators on metallic Riemannian structures, Honam Math. J., 42 (2020), 63–74. https://doi.org/10.5831/HMJ.2020.42.1.63 doi: 10.5831/HMJ.2020.42.1.63 |
[13] | C. E. Hretcanu, A. M. Blaga, Types of submanifolds in metallic Riemannian manifolds: A short survey, Mathematics, 9 (2021), 2467. https://doi.org/10.3390/math9192467 doi: 10.3390/math9192467 |
[14] | M. N. I. Khan, U. C. De, Liftings of metallic structures to tangent bundles of order r, AIMS Mathematics, 7 (2022), 7888–7897. https://doi.org/10.3934/math.2022441 doi: 10.3934/math.2022441 |
[15] | M. Ahmad, M. Ahmad, F. Moferreh, Bi-slant lightlike submanifolds of golden semi-Riemannian manifolds, AIMS Mathematics, 8 (2023), 19526–19545. https://doi.org/10.3934/math.2023996 doi: 10.3934/math.2023996 |
[16] | F. Şahin, B. Şahin, F. E. Erdoğan, Norden golden manifolds with constant sectional curvature and their submanifolds, Mathematics, 11 (2023), 3301. https://doi.org/10.3390/math11153301 doi: 10.3390/math11153301 |
[17] | M. Özkan, E. Taylan, A. A. Çitlak, On lifts of silver structure, J. Sci. Arts, 17 (2017), 223–234. doi: 10.3390/math11153301 |
[18] | R. C. Akpınar, On bronze Riemannian structures, Tbilisi Math. J., 13 (2020), 161–169. https://doi.org/10.32513/tbilisi/1601344906 doi: 10.32513/tbilisi/1601344906 |
[19] | L. Jäntschi, Eigenproblem basics and algorithms, Symmetry, 15 (2023), 2046. https://doi.org/10.3390/sym15112046 doi: 10.3390/sym15112046 |
[20] | L. Jäntschi, The eigenproblem translated for alignment of molecules, Symmetry, 11 (2019), 1027. https://doi.org/10.3390/sym11081027 doi: 10.3390/sym11081027 |
[21] | M. Altunbaş, Ç. Şengül, Metallic structures on tangent bundles of Lorentzian para-Sasakian manifolds, J. Mahani Math. Res., 12 (2023), 137–149. https://doi.org/10.22103/JMMR.2022.19411.1247 doi: 10.22103/JMMR.2022.19411.1247 |
[22] | S. Azami, Metallic structures on the tangent bundle of a P-Sasakian manifold, arXiv: 1904.12637, 2019. https://doi.org/10.48550/arXiv.1904.12637 |
[23] | G. Beldjilali, Almost contact metric and metallic Riemannian structures, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (2020), 19–30. |
[24] | I. Sato, On a structure similar to the almost contact structure, Tensor, 30 (1976), 219–224. |
[25] | A. Naveira, Classification of Riemannian almost-product manifolds, Rend. Di Mat. Di Roma, 3 (1983), 577–592. |
[26] | M. Staikova, K. Gribachev, Canonical connections and their conformal invariants on Riemannian P-manifolds, Serdica Math. J., 18 (1992), 150–161. |
[27] | C. Ida, A. Ionescu, A. Manea, A note on para-holomorphic Riemannian-Einstein manifolds, Int. J. Geom. Methods Mod. Phys., 13 (2016), 1650107. https://doi.org/10.1142/S0219887816501073 doi: 10.1142/S0219887816501073 |
[28] | C. Ida, A. Manea, On para-Norden metric connections, Balkan J. Geom. Appl., 21 (2016), 45–54. |
[29] | A. A. Salimov, M. Iscan, K. Akbulut, Notes on para-Norden-Walker 4-manifolds, Int. J. Geom. Methods Mod. Phys., 7 (2010), 1331–1347. https://doi.org/10.1142/S021988781000483X doi: 10.1142/S021988781000483X |
[30] | M. De León, P. R. Rodrigues, Methods of differential geometry in analytical mechanics, Elsevier, 1989. |
[31] | S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor, 29 (1975), 249–254. |