Research article Special Issues

Metallic deformation on para-Sasaki-like para-Norden manifold

  • Received: 20 March 2024 Revised: 13 May 2024 Accepted: 22 May 2024 Published: 07 June 2024
  • MSC : 53C15, 53C25, 53C50

  • The main goal of this paper is to define the concept of metallic deformation through a relation between the metallic structure and paracontact structure on an almost paracontact para-Norden manifold. A Riemannian connection is obtained on a metallically deformed para-Sasaki-like para-Norden manifold. A $ \varphi $-connection is obtained via the Riemannian connection on a metallically deformed para-Sasaki-like para-Norden manifold. The curvature tensors, Ricci tensors, scalar curvatures, and $ \ast $-scalar curvatures are investigated with respect to the Riemannian connection and the $ \varphi $-connection. Finally, an example is given of a metallically deformed $ 3 $-dimensional para-Sasaki-like para-Norden manifold.

    Citation: Rabia Cakan Akpınar, Esen Kemer Kansu. Metallic deformation on para-Sasaki-like para-Norden manifold[J]. AIMS Mathematics, 2024, 9(7): 19125-19136. doi: 10.3934/math.2024932

    Related Papers:

  • The main goal of this paper is to define the concept of metallic deformation through a relation between the metallic structure and paracontact structure on an almost paracontact para-Norden manifold. A Riemannian connection is obtained on a metallically deformed para-Sasaki-like para-Norden manifold. A $ \varphi $-connection is obtained via the Riemannian connection on a metallically deformed para-Sasaki-like para-Norden manifold. The curvature tensors, Ricci tensors, scalar curvatures, and $ \ast $-scalar curvatures are investigated with respect to the Riemannian connection and the $ \varphi $-connection. Finally, an example is given of a metallically deformed $ 3 $-dimensional para-Sasaki-like para-Norden manifold.



    加载中


    [1] M. Manev, M. Staikova, On almost paracontact Riemannian manifolds of type (n, n), J. Geom., 72 (2001), 108–114. https://doi.org/10.1007/s00022-001-8572-2 doi: 10.1007/s00022-001-8572-2
    [2] M. Manev, V. Tavkova, On almost paracontact almost paracomplex Riemannian manifolds, arXiv: 1805.11120, 2018. https://doi.org/10.48550/arXiv.1805.11120
    [3] S. Ivanov, H. Manev, M. Manev, Para-Sasaki-like Riemannian manifolds and new Einstein metrics, RACSAM Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat., 115 (2021), 112. https://doi.org/10.1007/s13398-021-01053-z doi: 10.1007/s13398-021-01053-z
    [4] H. Manev, M. Manev, Para-Ricci-like solitons on Riemannian manifolds with almost paracontact structure and almost paracomplex structure, Mathematics, 9 (2021), 1704. https://doi.org/10.3390/math9141704 doi: 10.3390/math9141704
    [5] H. Manev, Para-Ricci-like solitons with vertical potential on para-Sasaki-like Riemannian $\prod-$manifolds, Symmetry, 13 (2021), 2267. https://doi.org/10.3390/sym13122267 doi: 10.3390/sym13122267
    [6] M. Manev, V. Tavkova, Lie groups as 3-dimensional almost paracontact almost paracomplex Riemannian manifolds, J. Geom., 110 (2019), 43. https://doi.org/10.1007/s00022-019-0499-6 doi: 10.1007/s00022-019-0499-6
    [7] V. W. Spinadel, The metallic means family and multifractal spectra, Nonlinear Anal., 36 (1999), 721–745. https://doi.org/10.1016/S0362-546X(98)00123-0 doi: 10.1016/S0362-546X(98)00123-0
    [8] V. W. Spinadel, The metallic means family and forbidden symmetries, Int. Math. J., 2 (2002), 279–288.
    [9] C. Hretcanu, M. Crasmareanu, Metallic structures on Riemannian manifolds, Rev. Un. Mat. Argentina, 54 (2013), 15–27.
    [10] A. Gezer, C. Karaman, On metallic Riemannian structures, Turk. J. Math., 39 (2015), 954–962. https://doi.org/10.3906/mat-1504-50 doi: 10.3906/mat-1504-50
    [11] S. Turanli, A. Gezer, H. Cakicioglu, Metallic Kähler and nearly metallic Kähler manifolds, Int. J. Geom. Methods Mod. Phys., 18 (2021), 2150146. https://doi.org/10.1142/S0219887821501462 doi: 10.1142/S0219887821501462
    [12] H. Cayir, Operators on metallic Riemannian structures, Honam Math. J., 42 (2020), 63–74. https://doi.org/10.5831/HMJ.2020.42.1.63 doi: 10.5831/HMJ.2020.42.1.63
    [13] C. E. Hretcanu, A. M. Blaga, Types of submanifolds in metallic Riemannian manifolds: A short survey, Mathematics, 9 (2021), 2467. https://doi.org/10.3390/math9192467 doi: 10.3390/math9192467
    [14] M. N. I. Khan, U. C. De, Liftings of metallic structures to tangent bundles of order r, AIMS Mathematics, 7 (2022), 7888–7897. https://doi.org/10.3934/math.2022441 doi: 10.3934/math.2022441
    [15] M. Ahmad, M. Ahmad, F. Moferreh, Bi-slant lightlike submanifolds of golden semi-Riemannian manifolds, AIMS Mathematics, 8 (2023), 19526–19545. https://doi.org/10.3934/math.2023996 doi: 10.3934/math.2023996
    [16] F. Şahin, B. Şahin, F. E. Erdoğan, Norden golden manifolds with constant sectional curvature and their submanifolds, Mathematics, 11 (2023), 3301. https://doi.org/10.3390/math11153301 doi: 10.3390/math11153301
    [17] M. Özkan, E. Taylan, A. A. Çitlak, On lifts of silver structure, J. Sci. Arts, 17 (2017), 223–234. doi: 10.3390/math11153301
    [18] R. C. Akpınar, On bronze Riemannian structures, Tbilisi Math. J., 13 (2020), 161–169. https://doi.org/10.32513/tbilisi/1601344906 doi: 10.32513/tbilisi/1601344906
    [19] L. Jäntschi, Eigenproblem basics and algorithms, Symmetry, 15 (2023), 2046. https://doi.org/10.3390/sym15112046 doi: 10.3390/sym15112046
    [20] L. Jäntschi, The eigenproblem translated for alignment of molecules, Symmetry, 11 (2019), 1027. https://doi.org/10.3390/sym11081027 doi: 10.3390/sym11081027
    [21] M. Altunbaş, Ç. Şengül, Metallic structures on tangent bundles of Lorentzian para-Sasakian manifolds, J. Mahani Math. Res., 12 (2023), 137–149. https://doi.org/10.22103/JMMR.2022.19411.1247 doi: 10.22103/JMMR.2022.19411.1247
    [22] S. Azami, Metallic structures on the tangent bundle of a P-Sasakian manifold, arXiv: 1904.12637, 2019. https://doi.org/10.48550/arXiv.1904.12637
    [23] G. Beldjilali, Almost contact metric and metallic Riemannian structures, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69 (2020), 19–30.
    [24] I. Sato, On a structure similar to the almost contact structure, Tensor, 30 (1976), 219–224.
    [25] A. Naveira, Classification of Riemannian almost-product manifolds, Rend. Di Mat. Di Roma, 3 (1983), 577–592.
    [26] M. Staikova, K. Gribachev, Canonical connections and their conformal invariants on Riemannian P-manifolds, Serdica Math. J., 18 (1992), 150–161.
    [27] C. Ida, A. Ionescu, A. Manea, A note on para-holomorphic Riemannian-Einstein manifolds, Int. J. Geom. Methods Mod. Phys., 13 (2016), 1650107. https://doi.org/10.1142/S0219887816501073 doi: 10.1142/S0219887816501073
    [28] C. Ida, A. Manea, On para-Norden metric connections, Balkan J. Geom. Appl., 21 (2016), 45–54.
    [29] A. A. Salimov, M. Iscan, K. Akbulut, Notes on para-Norden-Walker 4-manifolds, Int. J. Geom. Methods Mod. Phys., 7 (2010), 1331–1347. https://doi.org/10.1142/S021988781000483X doi: 10.1142/S021988781000483X
    [30] M. De León, P. R. Rodrigues, Methods of differential geometry in analytical mechanics, Elsevier, 1989.
    [31] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor, 29 (1975), 249–254.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(581) PDF downloads(44) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog