Research article Special Issues

On the minimum distances of binary optimal LCD codes with dimension 5

  • Received: 29 March 2024 Revised: 23 May 2024 Accepted: 04 June 2024 Published: 07 June 2024
  • MSC : 11T71, 94B15

  • Let $ d_{a}(n, 5) $ and $ d_{l}(n, 5) $ be the minimum weights of optimal binary $ [n, 5] $ linear codes and linear complementary dual (LCD) codes, respectively. This article aims to investigate $ d_{l}(n, 5) $ of some families of binary $ [n, 5] $ LCD codes when $ n = 31s+t\geq 14 $ with $ s $ integer and $ t \in\; \{2, 8, 10, 12, 14, 16, 18\} $. By determining the defining vectors of optimal linear codes and discussing their reduced codes, we classify optimal linear codes and calculate their hull dimensions. Thus, the non-existence of these classes of binary $ [n, 5, d_{a}(n, 5)] $ LCD codes is verified, and we further derive that $ d_{l}(n, 5) = d_{a}(n, 5)-1 $ for $ t\neq 16 $ and $ d_{l}(n, 5) = 16s+6 = d_{a}(n, 5)-2 $ for $ t = 16 $. Combining them with known results on optimal LCD codes, $ d_{l}(n, 5) $ of all $ [n, 5] $ LCD codes are completely determined.

    Citation: Yang Liu, Ruihu Li, Qiang Fu, Hao Song. On the minimum distances of binary optimal LCD codes with dimension 5[J]. AIMS Mathematics, 2024, 9(7): 19137-19153. doi: 10.3934/math.2024933

    Related Papers:

  • Let $ d_{a}(n, 5) $ and $ d_{l}(n, 5) $ be the minimum weights of optimal binary $ [n, 5] $ linear codes and linear complementary dual (LCD) codes, respectively. This article aims to investigate $ d_{l}(n, 5) $ of some families of binary $ [n, 5] $ LCD codes when $ n = 31s+t\geq 14 $ with $ s $ integer and $ t \in\; \{2, 8, 10, 12, 14, 16, 18\} $. By determining the defining vectors of optimal linear codes and discussing their reduced codes, we classify optimal linear codes and calculate their hull dimensions. Thus, the non-existence of these classes of binary $ [n, 5, d_{a}(n, 5)] $ LCD codes is verified, and we further derive that $ d_{l}(n, 5) = d_{a}(n, 5)-1 $ for $ t\neq 16 $ and $ d_{l}(n, 5) = 16s+6 = d_{a}(n, 5)-2 $ for $ t = 16 $. Combining them with known results on optimal LCD codes, $ d_{l}(n, 5) $ of all $ [n, 5] $ LCD codes are completely determined.



    加载中


    [1] W. C. Huffman, V. Pless, Fundamentals of error-correcting codes, New York: Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511807077
    [2] E. F. Assmus Jr., J. D. Key, Affine and projective planes, Discrete Math., 83 (1990), 161–187. https://doi.org/10.1016/0012-365X(90)90003-Z
    [3] L. Lu, R. Li, L. Guo, Q. Fu, Maximal entanglement entanglement-assisted quantum codes constructed from linear codes, Quantum Inf. Process., 14 (2015), 165–182. https://doi.org/10.1007/s11128-014-0830-y doi: 10.1007/s11128-014-0830-y
    [4] J. L. Massey, Linear codes with complementary duals, Discrete Math., 106-107 (1992), 337–342. https://doi.org/10.1016/0012-365X(92)90563-U
    [5] C. Carlet, S. Guilley, Complementary dual codes for countermeasures to side-channel attacks, In: R. Pinto, P. Rocha Malonek, P. Vettori, Coding theory and applications, CIM Series in Mathematical Sciences, Berlin: Springer Verlag, 3 (2015), 97–105. https://doi.org/10.1007/978-3-319-17296-5_9
    [6] C. Carlet, S. Mesnager, C. Tang, Y. Qi, R. Pellikaan, Linear codes over $F_{q}$ are equivalent to LCD codes for $q>3$, IEEE Trans. Inform. Theory, 64 (2018), 3010–3017. https://doi.org/10.1109/TIT.2018.2789347 doi: 10.1109/TIT.2018.2789347
    [7] L. Galvez, J. L. Kim, N. Lee, Y. G. Roe, B. S. Won, Some bounds on binary LCD codes, Cryptogr. Commun., 10 (2018), 719–728. https://doi.org/10.1007/s12095-017-0258-1 doi: 10.1007/s12095-017-0258-1
    [8] Q. Fu, R. Li, F. Fu, Y. Rao, On the construction of binary optimal LCD codes with short length, Int. J. Found. Comput. Sci., 30 (2019), 1237–1245. https://doi.org/10.1142/S0129054119500242 doi: 10.1142/S0129054119500242
    [9] M. Harada, K. Saito, Binary linear complementary dual codes, Cryptogr. Commun., 11 (2019), 677–696. https://doi.org/10.1007/s12095-018-0319-0 doi: 10.1007/s12095-018-0319-0
    [10] M. Araya, M. Harada, K. Saito, Characterization and classification of optimal LCD codes, Des., Codes Cryptogr., 89 (2021), 617–640. https://doi.org/10.1007/s10623-020-00834-8 doi: 10.1007/s10623-020-00834-8
    [11] M. Araya, M. Harada, On the minimum weights of binary linear complementary dual codes, Cryptogr. Commun., 12 (2020), 285–300. https://doi.org/10.1007/s12095-019-00402-5 doi: 10.1007/s12095-019-00402-5
    [12] M. Araya, M. Harada, K. Saito, On the minimum weights of binary LCD codes and ternary LCD codes, Finite Fields Appl., 76 (2021), 101925. https://doi.org/10.1016/j.ffa.2021.101925 doi: 10.1016/j.ffa.2021.101925
    [13] S. Bouyuklieva, Optimal binary LCD codes, Des. Codes Cryptogr., 89 (2021), 2445–2461. https://doi.org/10.1007/s10623-021-00929-w
    [14] S. Li, M. Shi, Several constructions of optimal LCD codes over small finite fields, Cryptogr. Commun., 2024. https://doi.org/10.1007/s12095-024-00699-x
    [15] R. Li, Y. Liu, Q. Fu, On some problems of LCD codes, 2022 Symposium on Coding Theory and Cryptography and Their Related Topics, Shandong: Zi Bo, 2022.
    [16] F. Li, Q. Yue, Y. Wu, Designed distances and parameters of new LCD BCH codes over finite fields, Cryptogr. Commun., 12 (2020), 147–163. https://doi.org/10.1007/s12095-019-00385-3 doi: 10.1007/s12095-019-00385-3
    [17] W. C. Huffman, J. L. Kim, P. Solé, Concise encyclopedia of coding theory, Boca Raton: CRC Press, 2021,593–594. https://doi.org/10.1201/9781315147901
    [18] M. Grassl, Code tables: bounds on the parameters of various types of codes. Available from: http://www.codetables.de/.
    [19] R. Li, Z. Xu, X. Zhao, On the classification of binary optimal self-orthogonal codes, IEEE Trans. Inform. Theory, 54 (2008), 3778–3782. https://doi.org/10.1109/TIT.2008.926367 doi: 10.1109/TIT.2008.926367
    [20] F. Zuo, R. Li, Y. Liu, Weight distributation of binary optimal codes and its application, 2012 International Conference on Computer Science and Information Processing (CSIP), Shaanxi: Xi'an, 2012,226–229.
    [21] J. E. MacDonald, Design methods for maximum minimum-distance error-correcting codes, IBM J. Res. Dev., 4 (1960), 43–57. https://doi.org/10.1147/rd.41.0043 doi: 10.1147/rd.41.0043
    [22] The MathWorks, MATLAB R2006a, Natick, MA, 2006. Available from: https://blogs.mathworks.com/steve/2006/03/06/mathworks-product-release-r2006a/.
    [23] W. Bosma, J. Cannon, C. Playoust, The magma algebra system I: the user language, J. Symbolic Comput., 24 (1997), 235–265. https://doi.org/10.1006/jsco.1996.0125 doi: 10.1006/jsco.1996.0125
    [24] I. Bouyukliev, On the binary projective codes with dimension 6, Discrete Appl. Math., 154 (2006), 1693–1708. https://doi.org/10.1016/j.dam.2006.03.004 doi: 10.1016/j.dam.2006.03.004
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(449) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog