In this paper, we investigate the distributed approximate subgradient-type method for minimizing a sum of differentiable and non-differentiable convex functions subject to nondifferentiable convex functional constraints in a Euclidean space. We establish the convergence of the sequence generated by our method to an optimal solution of the problem under consideration. Moreover, we derive a convergence rate of order $ \mathcal{O}(N^{1-a}) $ for the objective function values, where $ a\in (0.5, 1) $. Finally, we provide a numerical example illustrating the effectiveness of the proposed method.
Citation: Jedsadapong Pioon, Narin Petrot, Nimit Nimana. Convergence of distributed approximate subgradient method for minimizing convex function with convex functional constraints[J]. AIMS Mathematics, 2024, 9(7): 19154-19175. doi: 10.3934/math.2024934
In this paper, we investigate the distributed approximate subgradient-type method for minimizing a sum of differentiable and non-differentiable convex functions subject to nondifferentiable convex functional constraints in a Euclidean space. We establish the convergence of the sequence generated by our method to an optimal solution of the problem under consideration. Moreover, we derive a convergence rate of order $ \mathcal{O}(N^{1-a}) $ for the objective function values, where $ a\in (0.5, 1) $. Finally, we provide a numerical example illustrating the effectiveness of the proposed method.
[1] | M. A. T. Figueiredo, R. D. Nowak, An EM algorithm for wavelet-based image restoration, IEEE T. Image Process., 12 (2003), 906–916. http://dx.doi.org/10.1109/TIP.2003.814255 doi: 10.1109/TIP.2003.814255 |
[2] | M. A. T. Figueiredo, J. M. Bioucas-Dias, R. D. Nowak, Majorization-minimization algorithms for wavelet-based image restoration, IEEE T. Image Process., 16 (2007), 2980–2991. http://dx.doi.org/10.1109/TIP.2007.909318 doi: 10.1109/TIP.2007.909318 |
[3] | A. Beck, M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE T. Image Process., 18 (2009), 2419–2434. http://dx.doi.org/10.1109/TIP.2009.2028250 doi: 10.1109/TIP.2009.2028250 |
[4] | A. Beck, M. Teboulle, 2-Gradient-based algorithms with applications to signal-recovery problems, Cambridge: Cambridge University Press, 2009, 42–88. https://doi.org/10.1017/CBO9780511804458.003 |
[5] | P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Sim., 4 (2005), 1168–1200. https://doi.org/10.1137/050626090 doi: 10.1137/050626090 |
[6] | I. Necoara, General convergence analysis of stochastic first-order methods for composite optimization, J. Optim. Theory Appl., 189 (2021), 66–95. https://doi.org/10.1007/s10957-021-01821-2 doi: 10.1007/s10957-021-01821-2 |
[7] | Y. Nesterov, Gradient methods for minimizing composite functions, Math. Program., 140 (2013), 125–161. https://doi.org/10.1007/s10107-012-0629-5 doi: 10.1007/s10107-012-0629-5 |
[8] | V. N. Vapnik, Statistical learning theory, New York: John Wiley & Sons, 1998. |
[9] | D. P. Bertsekas, Convex optimization algorithms, Belmont: Athena Scientific, 2015. |
[10] | A. Nedić, I. Necoara, Random minibatch subgradient algorithms for convex problems with functional constraints, Appl. Math. Optim., 80 (2019), 801–833. https://doi.org/10.1007/s00245-019-09609-7 doi: 10.1007/s00245-019-09609-7 |
[11] | D. P. Bertsekas, Nonlinear programming, J. Oper. Res. Soc., 48 (1997), 334. https://doi.org/10.1057/palgrave.jors.2600425 |
[12] | A. Nedić, D. P. Bertsekas, The effect of deterministic noise in subgradient methods, Math. Program., 125 (2010), 75–99. https://doi.org/10.1007/s10107-008-0262-5 doi: 10.1007/s10107-008-0262-5 |
[13] | S. Bonettini, A. Benfenati, V. Ruggiero, Scaling techniques for $\epsilon$-Subgradient methods, SIAM J. Optimiz., 26 (2016), 1741–1772. https://doi.org/10.1137/14097642X doi: 10.1137/14097642X |
[14] | E. S. Helou, L. E. A. Simões, $\epsilon$-subgradient algorithms for bilevel convex optimization, Inverse Probl., 33 (2017), 055020. https://doi.org/10.1088/1361-6420/aa6136 doi: 10.1088/1361-6420/aa6136 |
[15] | R. D. Millán, M. P. Machado, Inexact proximal $\epsilon$-subgradient methods for composite convex optimization problems, J. Global Optim., 75 (2019), 1029–1060. https://doi.org/10.1007/s10898-019-00808-8 doi: 10.1007/s10898-019-00808-8 |
[16] | Y. I. Alber, A. N. Iusem, M. V. Solodov, On the projected subgradient method for nonsmooth convex optimization in a Hilbert space, Math. Program., 81 (1998), 23–35. https://doi.org/10.1007/BF01584842 doi: 10.1007/BF01584842 |
[17] | K. C. Kiwiel, Convergence of approximate and incremental subgradient methods for convex optimization, SIAM J. Optimiz., 14 (2004), 807–840. https://doi.org/10.1137/S1052623400376366 doi: 10.1137/S1052623400376366 |
[18] | R. S. Burachik, J. E. Martínez-Legaz, M. Rezaie, M. Théra, An additive subfamily of enlargements of a maximally monotone operator, Set-Valued Var. Anal., 23 (2015), 643–665. https://doi.org/10.1007/s11228-015-0340-9 doi: 10.1007/s11228-015-0340-9 |
[19] | X. L. Guo, C. J. Zhao, Z. W. Li, On generalized $\epsilon$-subdifferential and radial epiderivative of set-valued mappings, Optim. Lett., 8 (2014), 1707–1720. https://doi.org/10.1007/s11590-013-0691-9 doi: 10.1007/s11590-013-0691-9 |
[20] | A. Simonetto, H. Jamali-Rad, Primal recovery from consensus-based dual decomposition for distributed convex optimization, J. Optim. Theory Appl., 168 (2016), 172–197. https://doi.org/10.1007/s10957-015-0758-0 doi: 10.1007/s10957-015-0758-0 |
[21] | M. V. Solodov, B. F. Svaiter, A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator, Set-Valued Var. Anal., 7 (1999), 323–345. https://doi.org/10.1023/A:1008777829180 doi: 10.1023/A:1008777829180 |
[22] | A. Beck, First-ordered methods in optimization, Philadelphia: SIAM, 2017. https://doi.org/10.1137/1.9781611974997 |
[23] | H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer, 2017. https://doi.org/10.1007/978-3-319-48311-5 |
[24] | C. Zalinescu, Convex analysis in general vector spaces, Singapore: World Scientific, 2002. https://doi.org/10.1142/5021 |
[25] | A. Nedić, Random algorithms for convex minimization problems, Math. Program., 129 (2011), 225–273. https://doi.org/10.1007/s10107-011-0468-9 doi: 10.1007/s10107-011-0468-9 |
[26] | B. T. Polyak, Introduction to optimization, New York: Optimization Software, 1987. |