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1. Introduction

Let Rk be a Euclidean space with inner product 〈·, ·〉 and its induced norm ‖ · ‖. Let m be a fixed
natural number. In this work, we focus on the convex optimization problem of the following form:

minimize φ(x) := f (x) + h(x),

subject to x ∈ X := X0 ∩

m⋂
i=1

Lev(gi, 0), (1.1)

where f : Rk → R is a real-valued differentiable convex function, h : Rk → R is a real-valued
(possibly) non-differentiable convex function, and the constrained set X is the intersection of a simple
closed convex set X0 ⊂ R

k and a finite number of a level set Lev(gi, 0) := {x ∈ Rk : gi(x) ≤ 0} of a real-
valued convex function gi : Rk → R for all index i = 1, . . . ,m. Throughout this work, we denote by X∗
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and φ∗ the set of all minimizers and the optimal value of the problem (1.1), respectively. The problem
in the form of problem (1.1) arises in some practical situations such as image processings [1–3], signal
recovery [4, 5], and statistics [6–8], to name but a few.

As the function f is a differentiable convex function and the function h is a convex function, it is
well known that the objective function f + h in the problem (1.1) is, of course, a non-differentiable
convex function. Therefore, one might attempt to solve problem (1.1) by using existing methods for
non-differentiable convex optimization problems, for instance, the subgradient methods or proximal
methods. It has been suggested and discussed that the proximal algorithm is generally preferable to the
subgradient algorithm since it can converge without any additional assumption on step-size sequence
and can archive a convergence rate of order O(1/N) for the objective function values. Nevertheless,
computing the proximal operator for the sum of functions can be challenging. In this situation, methods
for solving problems with the additive structure of the objective function, like the problem (1.1), often
utilize the specific structure of each function f and h when constructing the solution methods; see [9]
for more information. Focusing on iterative methods for dealing with the objective function in the form
of the sum of two convex functions, the well-known one is nothing else than the so-called proximal
gradient method, which suggests constructing a sequence {xn}

∞
n=0 as follows:

xn = argmin
x∈X

{
h(x) +

1
2αn−1

‖x − xn−1‖
2 + 〈∇ f (xn−1), x − xn−1〉

}
, ∀n ≥ 1, (1.2)

where αn is a positive step size, and ∇ f (xn) is a gradient of f at xn.
Let us notice that the proximal gradient method given in (1.2) may not be appropriate for the

problem (1.1) by virtue of the fact that the constraint set X of the current form is the intersection
of a finite number of closed convex sets. This is because, in updating the iterate xn+1 for every
iteration n ≥ 0, one is required to solve a constrained optimization subproblem over the intersection
of finitely many closed convex sets. To tackle this, Nedić and Necoara [10] proposed a subgradient
type method [10, Methods (2a)–(2c)] for solving the problem (1.1) in the case when the objective
function is only a function h with a strong convexity assumption and the constrained set is an infinite
number of constraint functions. The strategy is to separate the problem into two parts, namely the
step for minimizing the objective function φ over the simple set X0, and the second one is a parallel
computation for the feasible intersection

⋂m
i=1 Lev(gi, 0) via the classical subgradient scheme of each

constraint function gi for all index i = 1, . . . ,m. They analyzed its convergence results and showed that
the method had a sublinear convergence rate. Note that this strategy reduces the difficulty of dealing
with the whole constrained set by minimizing the function over a simple set and then minimizing
feasibility violations through parallel computation on each component of the functional constraints.

Since the calculation of the subgradient of each function gi is needed in the feasibility update, it may
face time-consuming difficulty due to the complication structures of the functions gi, i = 1, . . . ,m. To
overcome this drawback, the concept of the approximate subgradient of the functions gi has been
utilized. Apart from this mentioned issue, the concept of approximate subgradient also arises in
the duality theorem [11] and network optimization [12]. Moreover, the notion of an approximate
subgradient has been widely studied in various aspects when solving optimization problems, such as
ε-subgradient methods [13–15], projection ε-subgradient methods [16, 17], and its variant methods
[18–21]. Even if the main contributions of the approximate subgradient type methods is to reduce
the complication of the subgradient computation, it can be noted that within some acceptable error
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tolerance ε, the method with an approximate subgradient can improve the efficiency of its non-error of
tolerance type method, (see Table 1 below).

Motivated by the above discussions, we present in this work a distributed approximate subgradient
method based on the ideas of the proximal gradient method and the approximate subgradient method.
The main difference between the proposed method and the method proposed by Nedić and Necoara [10]
is that we used the proximal gradient method for dealing with the objective function and the
approximate subgradient method for the feasibility constrained set. The remainder of this work is
organized as follows: In Section 2, we recall the notations and auxiliary results that are needed for
our convergence work. In Section 3, we present an approximate subgradient method for solving the
considered problems. Subsequently, after building all the needed tools, we investigate the convergence
results and the convergence rate in Section 4. In Section 5, we present numerical experiments. Finally,
in Section 6, we give a conclusion.

2. Preliminaries

In this section, we recall some basic definitions and useful facts that will be used in the following
sections; readers may consult the books [22–24].

Let f : Rk → R be a real-valued function. We call f a convex function if

f ((1 − α)x + αy) ≤ (1 − α) f (x) + α f (y),

for all x, y ∈ Rk and α ∈ (0, 1). For each α ∈ R, an α-level set (in short, level set) of f at the level α is
defined by

Lev( f , α) := {x ∈ Rk : f (x) ≤ α}.

Note that, if f is continuous, the α-level set Lev( f , α) is a closed set for all α ∈ R. Moreover, if f is a
convex function, then its α-level set Lev( f , α) is a convex set for all α ∈ R.

For a given x ∈ Rk and ε ≥ 0, we call a vector s f (x) ∈ Rk an ε-subgradient of f at x if

f (y) ≥ f (x) + 〈s f (x), y − x〉 − ε,

holds for all y ∈ Rk. The set of all ε-subgradients of f at x is denoted by ∂ε f (x) and is called the
ε-subdifferential of f at x. In the case of ε = 0, we obtain a (usual) subgradient of f at x and denoted
the subdifferential set by ∂ f (x) := ∂0 f (x). For a convex function f : Rk → R and x ∈ Rk, we note that

∂ f (x) ⊂ ∂ε1 f (x) ⊂ ∂ε2 f (x),

for all ε1, ε2 ≥ 0 with ε1 < ε2.
We note that convexity is a sufficient condition for approximate subdifferentiability. Namely, for a

convex function f : Rk → R, the ε-subdifferential set ∂ε f (x) is a nonempty set for all x ∈ Rk and ε ≥ 0,
see [24, Theorem 2.4.9] for more details. Additionally, if X0 ⊂ R

k is a nonempty bounded set, then the
set

⋃
x∈X0

∂ε f (x) is a bounded set for all ε ≥ 0, see [24, Theorem 2.4.13].
Let X0 ⊂ R

k be a nonempty closed convex set, and x ∈ Rk. The normal cone to X0 at x is given by

NX0(x) := {y ∈ Rk : 〈y, z − x〉 ≤ 0,∀z ∈ X0}.
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The indicator function of X0, δX0 : Rk → (−∞,∞], is the function defined by

δX0(x) =

0 if x ∈ X0,

∞ if x < X0.

If the function f : Rk → R is convex and the set X0 ⊂ R
k is nonempty closed convex, then for every

x ∈ X0, we have

∂( f + δX0)(x) = ∂ f (x) + NX0(x).

Let f : Rk → R be a function, and X0 ⊂ R
k be a nonempty closed convex set. The set of all

minimizers of f over X0 is denoted by

argminx∈X0
f (x) := {z ∈ X0 : f (z) ≤ f (x),∀x ∈ X0}.

If the function f : Rk → R is convex and the set X0 ⊂ R
k is a nonempty closed convex, then x∗ ∈

argminx∈X0
f (x) if and only if,

0 ∈ ∂ f (x∗) + NX0(x
∗),

that is, there exists s f (x) ∈ ∂ f (x∗) for which

〈s f (x∗), x − x∗〉 ≥ 0,

for any x ∈ X0.

Let X0 ⊂ R
k be a nonempty closed convex set, and x ∈ Rk. We call a point y ∈ X0 the projection of

x onto X0 if

‖y − x‖ ≤ ‖z − x‖,

for all z ∈ X0 and denoted by y =: PX0(x). It is well known that the projection onto X0 is uniquely
determined. Actually, we denote the distance from x to X0 by dist(x, X0) := ‖PX0(x) − x‖.

3. Algorithm and assumptions

In this section, we start our investigation by proposing a distributed approximate subgradient
method for solving the considered constrained convex optimization problem (1.1). We subsequently
discuss the important assumptions for analyzing the convergence behaviors of the proposed method.
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Algorithm 1: Distributed approximate subgradient method.

Initialization: Given a step size {αn}
∞
n=0 ⊂ (0,∞), error tolerances {εn,i}

∞
n=1 ⊂ [0,∞) for all

i = 1, 2, . . . ,m, and put d0 ∈ R
k \ {0}. Let the initial point x0 ∈ X0 be arbitrary.

Iterative Step: For an iterate xn−1 ∈ X0 (n = 1, 2, 3, . . .), compute

vn = argmin
u∈X0

{
h(u) +

1
2αn−1

‖u − xn−1‖
2 + 〈∇ f (xn−1),u − xn−1〉

}
.

For i = 1, 2, . . . ,m, compute

dn,i ∈

∂εn,ig
+
i (vn) \ {0} if g+

i (vn) > 0,
{d0} if g+

i (vn) = 0,

where g+
i (vn) = max{gi(vn), 0}, and compute

zn,i = vn −
g+

i (vn)
(max{‖dn,i‖, 1})2 dn,i, i = 1, 2, . . . ,m.

Compute

z̄n =
1
m

m∑
i=1

zn,i,

and
xn = PX0(z̄n).

Update n := n + 1

Some important comments relating to Algorithm 1 are in order.

Remark 3.1. (i) Since the objective function h(·)+
1

2αn−1
‖ ·−xn−1‖

2 +〈∇ f (xn−1), ·−xn−1〉 is a strongly

convex function and the constrained set X0 ⊂ R
k is a nonempty closed convex set, we can ensure

the existence and uniqueness of its minimizer, namely the iterate vn for all n ≥ 1. This means that
the iterate vn is well-defined for all n ≥ 1.

(ii) Since the function gi is a real-valued convex function, we note that the function g+
i = max{gi, 0} is

also a convex function. This implies that the εn,i-subdifferential set ∂εn,ig
+
i (vn) is nonempty for all

n ≥ 1. Moreover, if g+
i (vn) > 0, it follows that 0 < ∂g+

i (vn). Indeed, since Yi , ∅ and Yi = {x ∈ Rk :
g+

i (x) ≤ 0}, there exists a point x ∈ Rk such that g+
i (x) ≤ 0 and hence minx∈Rk g+

i (x) ≤ 0 < g+
i (vn)

which implies that vn is not a minimizer of the function g+
i , and hence 0 < ∂g+

i (vn). Also, it follows
from the properties of the εn,i-subdifferential set that ∂g+

i (vn) ⊂ ∂εn,ig
+
i (vn) which implies that the

well-definiteness choice of a nonzero vector dn,i is guaranteed.

The following assumption will play an important role throughout the convergence results of
this work:

Assumption 3.2. The constrained set X0 is bounded.
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As a consequence of Assumption 3.2, we state here the boundedness properties of some related
sequences and subdifferential sets as the following proposition.

Proposition 3.3. The following statements hold true:

(i) There exists a positive constant M such that for all i = 1, . . . ,m, we have

g+
i (x) ≤ M,

for all x ∈ X0.
(ii) There exists a positive constant B such that

max{‖∇ f (x)‖, ‖sh(x)‖, ‖sφ(x)‖} ≤ B,

for all x ∈ X0.
(iii) There exists a positive constant D such that for all n ≥ 1 and for all i = 1, . . . ,m, we have

0 < ‖dn,i‖ ≤ D.

(iv) The sequences {xn}
∞
n=0, {vn}

∞
n=1, {z̄n}

∞
n=1, {dn,i}

∞
n=1 and {zn,i}

∞
n=1, i = 1, . . . ,m, are bounded.

Proof. (i) For each i = 1, 2, . . . ,m, since the function g+
i is continuous and the set X0 is compact, we

obtain that the image of g+
i is also bounded over the set X0. Hence, such an M > 0 exists.

(ii) Since the ε-subdifferential set is bounded on a bounded set X0, for each ε ≥ 0, we get that the
vectors ∇ f (x), sh(x), and sφ(x) are bounded for all x ∈ X0, which implies (ii).

(iii) By the same reasoning in (ii) and the definition of vn and dn,i that dn,i is bounded for all n ≥ 1
and for all i = 1, 2, . . . ,m.

(iv) The boundedness of X0 implies that the sequences {xn}
∞
n=0 and {vn}

∞
n=1 are bounded, while

the boundedness of dn,i and vn and the definition of z̄n and zn,i implies that {z̄n}
∞
n=1 and {zn,i}

∞
n=1, i =

1, 2, . . . ,m, are bounded. �

The following conditions on parameters are needed to guarantee the convergence result of
Algorithm 1.

Assumption 3.4. The sequence {αn}
∞
n=0 and {εn,i}

∞
n=1, i = 1, . . . ,m, satisfy the following properties:

(i)
∑∞

n=0 αn = ∞ and
∑∞

n=0 α
2
n < ∞.

(ii)
∑∞

n=1 εn,i < ∞ for all i = 1, 2, . . . ,m.

Remark 3.5. One may choose sequences αn := α
(n+1)a and εn,i := ε

(n+1)b , where a, b, α, ε > 0 such that

a ∈
(

1
2 , 1

]
and b > 1, for particular examples of the sequences {αn}

∞
n=0 and {εn,i}

∞
n=1, i = 1, 2, . . . ,m,

satisfy Assumption 3.4.

The following assumption forms a key tool in proving the convergence result.

Assumption 3.6. There exists a real number c > 0 such that

dist2(x, X) ≤
c
m

m∑
i=1

(g+
i (x))2 for all x ∈ X0.
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Remark 3.7. Assumption 3.6 can be seen as a deterministic version of the assumptions proposed
in [25, Assumption 2] and [10, Assumption 2]. The condition given in Assumption 3.6 is also related
to the notion of linear regularity of a finite collection of sets; see [25, pages 231–232] for further details.
A simple example of the constraint set X that satisfies Assumption 3.6 is, for instance, X := X0∩Y1∩Y2

where X0 := [0, 1]× [0, 1], Y1 = {x := (x1, x2) ∈ R2 : g1(x) := x1− x2 ≤ 0} and Y2 = {x := (x1, x2) ∈ R2 :
g2(x) := −2x1 + x2 ≤ 0}. It can be seen that for all c ≥ 1, we have dist2(x, X) ≤

c
2

(
(g+

1 (x))2 + (g+
2 (x))2

)
for all x ∈ X0.

4. Convergence results

In this section, we will consider the convergence properties of the generated sequences. We
divide this section into three parts. Namely, we start with the first subsection by providing some
useful technical relations for the generated sequences. We subsequently prove the convergence of the
generated sequences to an optimal solution in the second subsection. We close this section by deriving
the rate of convergence of the function values of iterate to the optimal value of the considered problem.

4.1. Technical lemmas

The following lemma provides an essential relation between the iterates vn+1 and xn which are used
to derive some consequence relations for the generated iterates.

Lemma 4.1. Let {xn}
∞
n=0 and {vn}

∞
n=1 be the sequences generated by Algorithm 1. Then, for every n ≥ 0,

η > 0 and x ∈ X0, we have

‖vn+1 − x‖2 ≤ ‖xn − x‖2 −
1

η + 1
‖xn − vn+1‖

2 − 2αn(φ(xn) − φ(x)) +
4(1 + η)

η
α2

nB2.

Proof. Let n ≥ 0, η > 0, and x ∈ X0 be given. We first note that

‖vn+1 − x‖2 = ‖xn − x‖2 − ‖xn − vn+1‖
2 + 2〈xn − vn+1, x − vn+1〉. (4.1)

Now, it follows from the definition of vn+1 and the optimality condition for constrained
optimization that

0 ∈ ∂
(
h(·) +

1
2αn
‖ · −xn‖

2 + 〈∇ f (xn), · − xn〉

)
(vn+1) + NX0(vn+1),

which is the same as

1
αn

(xn − vn+1) − ∇ f (xn) ∈ ∂h(vn+1) + NX0(vn+1)

= ∂h(vn+1) + ∂δX0(vn+1) = ∂(h + δX0)(vn+1).

This, along with the facts that x ∈ X0 and vn+1 ∈ X0, yield〈
1
αn

(xn − vn+1) − ∇ f (xn), x − vn+1

〉
≤ (h + δX0)(x) − (h + δX0)(vn+1),
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= h(x) + δX0(x) − h(vn+1) − δX0(vn+1),
= h(x) − h(vn+1),

or, equivalently, that

〈xn − vn+1, x − vn+1〉 ≤ αn(h(x) − h(vn+1)) + αn〈∇ f (xn), x − vn+1.〉. (4.2)

Thus, we employ the relation (4.2) in (4.1) and obtain the following:

‖vn+1 − x‖2 ≤ ‖xn − x‖2 − ‖xn − vn+1‖
2 + 2αn(h(x) − h(vn+1)) + 2αn〈∇ f (xn), x − vn+1〉,

= ‖xn − x‖2 − ‖xn − vn+1‖
2 + 2αn(h(x) − h(xn)) + 2αn(h(xn) − h(vn+1))

+2αn〈∇ f (xn), x − vn+1〉,

= ‖xn − x‖2 − ‖xn − vn+1‖
2 + 2αn(h(x) − h(xn)) + 2αn(h(xn) − h(vn+1))

+2αn〈∇ f (xn), x − xn〉 + 2αn〈∇ f (xn), xn − vn+1〉. (4.3)

We note from the first-order characterization of the convex function that

2αn〈∇ f (xn), x − xn〉 ≤ 2αn( f (x) − f (xn)). (4.4)

Now, for the upper bound of the term 2αn〈∇ f (xn), xn − vn+1〉, we note from the well known Young’s
inequality that

2αn〈∇ f (xn), xn − vn+1〉 ≤
2(1 + η)

η
α2

n‖∇ f (xn)‖2 +
η

2(1 + η)
‖xn − vn+1‖

2

≤
2(1 + η)

η
α2

nB2 +
η

2(1 + η)
‖xn − vn+1‖

2. (4.5)

Moreover, for a given subgradient sh(xn) ∈ ∂h(xn), we note that

2αn(h(xn) − h(vn+1)) ≤ 2αn〈sh(xn), xn − vn+1〉,

≤
2(1 + η)

η
α2

n‖sh(xn)‖2 +
η

2(1 + η)
‖xn − vn+1‖

2

≤
2(1 + η)

η
α2

nB2 +
η

2(1 + η)
‖xn − vn+1‖

2. (4.6)

By using the obtained relations (4.4)–(4.6) in the inequality (4.3), we derive that

‖vn+1 − x‖2 ≤ ‖xn − x‖2 −
1

η + 1
‖xn − vn+1‖

2 − 2αn (φ(xn) − φ(x)) +
4(1 + η)

η
α2

nB2,

which is nothing else than the required inequality. �

Lemma 4.2. Let {xn}
∞
n=0 and {vn}

∞
n=1 be the sequences generated by Algorithm 1. Then, for every n ≥ 0,

η > 0 and x∗ ∈ X∗, we have

‖vn+1 − x∗‖2 + αn (φ(PX(xn)) − φ(x∗)) ≤ ‖xn − x∗‖2 −
1

η + 1
‖xn − vn+1‖

2

+2αnB‖PX(xn) − xn‖ +
4(1 + η)

η
α2

nB2.
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Proof. Let n ≥ 0, η > 0, and x∗ ∈ X∗ be given. For a given sφ(x∗) ∈ ∂φ(x∗), we note from the definition
of subgradient that

φ(xn) − φ∗ ≥ 〈sφ(x∗), xn − x∗〉,
= 〈sφ(x∗), PX(xn) − x∗〉 + 〈sφ(x∗), xn − PX(xn)〉,
≥ −B‖PX(xn) − xn‖, (4.7)

where the second inequality holds true by the necessary and sufficient optimality conditions for convex
constrained optimization. Similarly, for a given sφ(PX(xn)) ∈ ∂φ(PX(xn)), we have

φ(xn) − φ∗ = φ(xn) − φ(PX(xn)) + φ(PX(xn)) − φ(x∗),
≥ −〈sφ(PX(xn)), PX(xn) − xn〉 + φ(PX(xn)) − φ(x∗),
≥ −B‖PX(xn) − xn‖ + φ(PX(xn)) − φ(x∗). (4.8)

By adding these two obtained relations (4.7) and (4.8) and subsequently multiplying by 1
2 , we obtain

φ(xn) − φ∗ ≥
1
2

(φ(PX(xn)) − φ(x∗)) − B‖PX(xn) − xn‖.

Applying this together with the inequality in Lemma 4.1, we obtain that

‖vn+1 − x∗‖2 + αn(φ(PX(xn)) − φ∗) ≤ ‖xn − x∗‖2 −
1

η + 1
‖xn − vn+1‖

2

+2αnB‖PX(xn) − xn‖ +
4(1 + η)

η
α2

nB2,

as desired. �

We now derive a relation between the iterates vn and zn,i.

Lemma 4.3. Let {vn}
∞
n=1 and {zn,i}

∞
n=1, i = 1, . . . ,m, be the sequences generated by Algorithm 1. Then,

for every n ≥ 1, i = 1, 2, . . . ,m and x ∈ X, we have

‖zn,i − x‖2 ≤ ‖vn − x‖2 −
(g+

i (vn))2

(max{‖dn,i‖, 1})2 + 2g+
i (vn)εn,i.

Proof. Let n ≥ 1, i = 1, 2, . . . ,m and x ∈ X be given. We note from the definition of zn,i that

‖zn,i − x‖2 =

∥∥∥∥∥∥vn −
g+

i (vn)
(max{‖dn,i‖, 1})2 dn,i − x

∥∥∥∥∥∥2

= ‖vn − x‖2 − 2
g+

i (vn)
(max{‖dn,i‖, 1})2 〈vn − x,dn,i〉 +

∥∥∥∥∥∥ g+
i (v)

(max{‖dn,i‖, 1})2 dn,i

∥∥∥∥∥∥2

= ‖vn − x‖2 + 2
g+

i (vn)
(max{‖dn,i‖, 1})2 〈x − vn,dn,i〉

+
(g+

i (vn))2

(max{‖dn,i‖, 1})4 ‖dn,i‖
2. (4.9)
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If g+
i (vn) = 0, then it is clearly that

‖zn,i − x‖2 = ‖vn − x‖2.

We now consider the case g+
i (vn) > 0 as follows: Since dn,i ∈ ∂εn,ig

+
i (vn)\{0}, we note that

0 = g+
i (x) ≥ 〈x − vn,dn,i〉 + g+

i (vn) − εn,i,

which is

〈x − vn,dn,i〉 ≤ −g+
i (vn) + εn,i.

We also note that (
‖dn,i‖

max{‖dn,i‖, 1}

)2

≤ 1,

and
1

(max{‖dn,i‖, 1})2 ≤ 1.

Applying these obtained relations in (4.9), we get

‖zn,i − x‖2 ≤ ‖vn − x‖2 −
(g+

i (vn))2

(max{‖dn,i‖, 1})2 + 2g+
i (vn)εn,i,

as desired. �

In order to derive the relation between dist2(xn, X) and dist2(vn, X), we need the following fact:

Proposition 4.4. Let z1, z2, . . . , zm ∈ R
k and z̄ = 1

m

∑m
i=1 zi be given. Then, for every x ∈ Rk

‖z̄ − x‖2 =
1
m

m∑
i=1

‖zi − x‖2 −
1
m

m∑
i=1

‖zi − z̄‖2.

Proof. It is straightforward based on the properties of the inner product and norm. �

We are now considering the relation between dist2(xn, X) and dist2(vn, X) in the following lemma.

Lemma 4.5. Let {xn}
∞
n=0 and {vn}

∞
n=1 be the sequences generated by Algorithm 1. Then, for every n ≥ 1,

we have

dist2(xn, X) ≤ dist2(vn, X) −
1

mD
2

m∑
i=1

(g+
i (vn))2 +

2M
m

m∑
i=1

εn,i,

where D = max{D, 1}.

Proof. Let n ≥ 1 be given. Since xn = PX0(z̄n), it is noted, for all x ∈ X ⊂ X0, that

‖xn − x‖2 ≤ ‖z̄n − x‖2 − ‖xn − z̄n‖
2. (4.10)
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Since z̄n =
1
m

m∑
i=1

zn,i, we note from Proposition 4.4 that for all x ∈ X,

‖z̄n − x‖2 =
1
m

m∑
i=1

‖zn,i − x‖2 −
1
m

m∑
i=1

‖zn,i − z̄n‖
2,

which implies that the inequality (4.10) becomes

‖xn − x‖2 ≤
1
m

m∑
i=1

‖zn,i − x‖2 −
1
m

m∑
i=1

‖zn,i − z̄n‖
2 − ‖xn − z̄n‖

2, (4.11)

for all x ∈ X. By summing up the inequality obtained in Lemma 4.3 for i = 1 to m, and, subsequently,
dividing by m for both sides of the inequality, we have

1
m

m∑
i=1

‖zn,i − x‖2 ≤ ‖vn − x‖2 −
1
m

m∑
i=1

(g+
i (vn))2

(max{‖dn,i‖, 1})2 +
2
m

m∑
i=1

g+
i (vn)εn,i.

This, together with inequality (4.11), means that for all x ∈ X,

‖xn − x‖2 ≤ ‖vn − x‖2 −
1
m

m∑
i=1

(g+
i (vn))2

(max{‖dn,i‖, 1})2 +
2
m

m∑
i=1

g+
i (vn)εn,i

−
1
m

m∑
i=1

‖zn,i − z̄n‖
2 − ‖xn − z̄n‖

2.

Invoking the bounds given in Proposition 3.3, we have for every x ∈ X that

‖xn − x‖2 ≤ ‖vn − x‖2 −
1

mD
2

m∑
i=1

(g+
i (vn))2 +

2M
m

m∑
i=1

εn,i. (4.12)

Putting x = PX(vn) ∈ X in the inequality (4.12), we obtain

‖xn − PX(vn)‖2 ≤ ‖vn − PX(vn)‖2 −
1

mD
2

m∑
i=1

(g+
i (vn))2 +

2M
m

m∑
i=1

εn,i,

and hence

dist2(xn, X) ≤ dist2(vn, X) −
1

mD
2

m∑
i=1

(g+
i (vn))2 +

2M
m

m∑
i=1

εn,i.

�

As a consequence of the preceding lemmas, we obtain the following relation that is used to prove
the convergence of the sequence {‖vn − x∗‖2}∞n=1 for all x∗ ∈ X∗.

Lemma 4.6. Let {xn}
∞
n=0 and {vn}

∞
n=1 be the sequences generated by Algorithm 1. Then, for every n ≥ 0,

η > 0 and x∗ ∈ X∗, we have

‖vn+1 − x∗‖2 + αn(φ(PX(xn)) − φ∗) ≤ ‖vn − x∗‖2 −
1

η + 1
‖xn − vn+1‖

2
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−
1

mD
2

m∑
i=1

(g+
i (vn))2 + ηdist2(xn, X)

+
2M
m

m∑
i=1

εn,i +
5 + 4η
η

α2
nB2,

where D = max{D, 1}.

Proof. Let n ≥ 1, η > 0, and x∗ ∈ X∗ be given. By using the inequality (4.12) and replacing x ∈ X by
x∗, which also belongs to X, we note that

‖xn − x∗‖2 ≤ ‖vn − x∗‖2 −
1

mD
2

m∑
i=1

(g+
i (vn))2 +

2M
m

m∑
i=1

εn,i.

Furthermore, by applying Young’s inequality, we note that

2αnB‖PX(xn) − xn‖ = 2
(
αn

√
η−1B

) (√
η‖PX(xn) − xn‖

)
≤

1
η
α2

nB2 + η‖PX(xn) − xn‖
2.

Invoking these two relations in the inequality obtained in Lemma 4.2, we get that

‖vn+1 − x∗‖2 + αn(φ(PX(xn)) − φ∗) ≤ ‖vn − x∗‖2 −
1

η + 1
‖xn − vn+1‖

2

−
1

mD
2

m∑
i=1

(g+
i (vn))2 +

2M
m

m∑
i=1

εn,i

+
1
η
α2

nB2 + η‖PX(xn) − xn‖
2 +

4(1 + η)
η

α2
nB2,

which is the required inequality. �

4.2. Convergence of iterates

In order to obtain the existence of the limit of the sequence {‖vn − x∗‖}∞n=1, we need the
following proposition:

Proposition 4.7. [26] Let {an}
∞
n=1, {bn}

∞
n=1 and {cn}

∞
n=1 be sequences of nonnegative real numbers. If it

holds that an+1 ≤ an + bn − cn for all n ≥ 1, and
∑∞

n=1 bn < ∞, then limn→∞ an exists and
∑∞

n=1 cn < ∞.

Now, we are in a position to prove the main convergence theorem. The theorem guarantees that
both generated sequences {vn}

∞
n=1 and {xn}

∞
n=0 converge to a point in the solution set X∗.

Theorem 4.8. The sequences {vn}
∞
n=1 and {xn}

∞
n=0 generated by Algorithm 1 converge to an optimal

solution in X∗.

Proof. Let n ≥ 1 be given. Since vn ∈ X0, it follows from Assumption 3.6 that there exists a constant
c > 0 such that

dist2(vn, X) ≤
c
m

m∑
i=1

(g+
i (vn))2. (4.13)
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Now, putting c > 0 such that

c > max
{

c,
1

D
2

}
, (4.14)

we have

0 < q :=
1

cD
2 < 1. (4.15)

This, together with (4.13) and Lemma 4.5, imply that

1
c

dist2(xn, X) ≤
1
c

dist2(vn, X) −
1

cmD
2

m∑
i=1

(g+
i (vn))2 +

2M
cm

m∑
i=1

εn,i,

≤ (1 − q)
1
m

m∑
i=1

(g+
i (vn))2 +

2M
cm

m∑
i=1

εn,i,

and then
1
m

m∑
i=1

[g+
i (vn)]2 ≥

1
c(1 − q)

dist2(xn, X) −
2M

cm(1 − q)

m∑
i=1

εn,i.

By applying this obtained relation together with the inequality in Lemma 4.6, we have for all η > 0

‖vn+1 − x∗‖2 + αn(φ(PX(xn)) − φ(x∗)) ≤ ‖vn − x∗‖2 −
1

η + 1
‖xn − vn+1‖

2 +
2M
m

m∑
i=1

εn,i

−
1

c̄D
2
(1 − q)

dist2(xn, X) +
2M

mcD
2
(1 − q)

m∑
i=1

εn,i

+ηdist2(xn, X) +
5 + 4η
η

α2
nB2

= ‖vn − x∗‖2 −
1

η + 1
‖xn − vn+1‖

2

−

(
q

(1 − q)
− η

)
dist2(xn, X)

+
5 + 4η
η

α2
nB2 +

2M
m(1 − q)

m∑
i=1

εn,i.

Now, by putting η := q
(1−q) > 0 in the above inequality, we can neglect the non-negative term(

q
(1−q) − η

)
dist2(xn, X) so that the above inequality can be written as

‖vn+1 − x∗‖2 + αn(φ(PX(xn)) − φ(x∗)) ≤ ‖vn − x∗‖2 −
1

η + 1
‖xn − vn+1‖

2

+
5 + 4η
η

α2
nB2 +

2M
m(1 − q)

m∑
i=1

εn,i, (4.16)
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which implies that

‖vn+1 − x∗‖2 ≤ ‖vn − x∗‖2 −
1

η + 1
‖xn − vn+1‖

2 +
5 + 4η
η

α2
nB2 +

2M
m(1 − q)

m∑
i=1

εn,i. (4.17)

Invoking Assumption 3.4 (ii) together with Proposition 4.7 in (4.17), we conclude that the limit

lim
n→∞
‖vn − x∗‖ exists,

and, as well as,

lim
n→∞
‖xn − vn+1‖ = 0. (4.18)

On the other hand, by applying the inequality (4.12) in the relation obtained in Lemma 4.1 by replacing
x by x∗, we note that

2αn(φ(xn) − φ∗) ≤ ‖vn − x∗‖2 − ‖vn+1 − x∗‖2 −
1

mD
2

m∑
i=1

(g+
i (vn))2

+
4(1 + η)

η
α2

nB2 +
2M
m

m∑
i=1

εn,i, (4.19)

and then

2αn(φ(xn) − φ∗) ≤ ‖vn − x∗‖2 − ‖vn+1 − x∗‖2 +
4(1 + η)

η
α2

nB2 +
2M
m

m∑
i=1

εn,i.

Now, let us fix a positive integer N ≥ 1. Summing up the above relation for n = 1 to N, we have

2
N∑

n=1

αn(φ(xn) − φ∗) ≤ ‖v1 − x∗‖2 +
4(1 + η)

η
B2

N∑
n=1

α2
n +

2M
m

m∑
i=1

N∑
n=1

εn,i. (4.20)

By approaching N → ∞, we obtain that

∞∑
n=1

αn(φ(xn) − φ∗) < ∞.

Next, we show that lim inf
n→∞

(φ(xn)−φ∗) ≤ 0. Suppose, to the contrary, that there exists N′ ∈ N and β > 0
such that φ(xn) − φ∗ ≥ β for all n ≥ N′. Since

∞ = β

∞∑
n=N′

αn ≤

∞∑
n=N′

αn(φ(xn) − φ∗) < ∞,

we also have lim inf
n→∞

(φ(xn) − φ∗) ≤ 0, that is, lim inf
n→∞

φ(xn) ≤ φ∗.
Now, since the sequence {xn}

∞
n=1 is bounded, there exists a subsequence {xnl}

∞
l=1 of {xn}

∞
n=1 such that

lim
l→∞

φ(xnl) = lim inf
n→∞

φ(xn) ≤ φ∗. Moreover, since {xnl}
∞
l=1 is also a bounded sequence, there exists a
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subsequence {xnl j
}∞i=1 of {xnl}

∞
l=1 and a point x̂ ∈ Rk in which xnl j

→ x̂. Thus, by using (4.18), we have
vnl j
→ x̂.

On the other hand, by utilizing the relation in (4.19), we note that for all j ≥ 1

1

mD
2

m∑
i=1

(g+
i (vnl j

))2 ≤ ‖vnl j
− x∗‖2 − ‖vnl j +1 − x∗‖2

+
4(1 + η)

η
α2

nl j
B2 +

2M
m

m∑
i=1

εnl j ,i
+ 2αnl j

|φ(xnl j
) − φ∗|.

Now, by using the fact that the sequence {|φ(xn) − φ∗|}∞n=1 is bounded, the continuity of each g+
i , i =

1, 2, . . . ,m and letting j→ ∞, we obtain

g+
i (x̂) = 0 for all i = 1, 2, . . . ,m,

which implies that x̂ ∈
⋂m

i=1 Lev(gi, 0). Since the sequence {xnl j
}∞j=1 ⊂ X0, the closedness of X0 yields

that x̂ ∈ X0, and hence x̂ ∈ X := X0 ∩
⋂m

i=1 Lev(gi, 0).
Finally, by using the continuity of φ, we obtain that

φ(x̂) = lim
j→∞

φ(xnl j
) = lim

l→∞
φ(xnl) ≤ φ

∗,

which implies that x̂ ∈ X∗. Therefore, we conclude that the sequence {vn}
∞
n=1 converges to the point

x̂ ∈ X∗. This yields that the sequnce {xn}
∞
n=1 also converges to the point x̂ ∈ X∗. This completes

the proof. �

4.3. Rate analysis

In this subsection, we consider the rate of convergence of the objective values {φ(xn)}∞n=0 to the
optimal value φ∗.

Theorem 4.9. Let {xn}
∞
n=0 and {vn}

∞
n=1 be the sequences generated by Algorithm 1. Then, for a positive

integer N ≥ 1, it holds that

min
1≤n≤N

φ(xn) − φ∗ ≤
dist2(v1, X∗) + 4cD

2
B2 ∑N

n=1 α
2
n + 2M

m

∑m
i=1

∑N
n=1 εn,i

2
∑N

n=1 αn
,

where c > max
{
c, 1

D
2

}
and D = max{D, 1}.

Proof. We note from the inequality (4.20) that for all positive integers N ≥ 1

2
N∑

n=1

αn(φ(xn) − φ∗) ≤ ‖v1 − x∗‖2 +
4(1 + η)

η
B2

N∑
n=1

α2
n +

2M
m

m∑
i=1

N∑
n=1

εn,i,

which implies that

min
1≤n≤N

φ(xn) − φ∗ ≤
‖v1 − x∗‖2 +

4(1+η)
η

B2 ∑N
n=1 α

2
n + 2M

m

∑m
i=1

∑N
n=1 εn,i

2
∑N

n=1 αn
.
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By using the property of c given in (4.14) that c > max
{
c, 1

D
2

}
, the definition of q in (4.15) that

0 < q := 1
cD

2 < 1 and the definition of η that η := q
(1−q) > 0, we note that

(1 + η)
η

=
1
q

= cD
2
.

This yields that

min
1≤n≤N

φ(xn) − φ∗ ≤
‖v1 − x∗‖2 + 4cD

2
B2 ∑N

n=1 α
2
n + 2M

m

∑m
i=1

∑N
n=1 εn,i

2
∑N

n=1 αn
,

and hence

min
1≤n≤N

φ(xn) − φ∗ ≤
dist2(v1, X∗) + 4cD

2
B2 ∑N

n=1 α
2
n + 2M

m

∑m
i=1

∑N
n=1 εn,i

2
∑N

n=1 αn
,

as required. �

To obtain the convergence rate of the objective function, we need the following proposition:

Proposition 4.10. [22, Lemma 8.26] Let f : [a − 1, b + 1] → R be a continuous, nonincreasing
real-valued function over [a − 1, b + 1], where a and b are integers such that a ≤ b. Then∫ b+1

a
f (t)dt ≤ f (a) + f (a + 1) + . . . + f (b) ≤

∫ b

a−1
f (t)dt.

We close this subsection by considering a particular stepsize sequence {αn}
∞
n=0 in Theorem 4.9 to

obtain the O
(

1
N1−a

)
rate of convergence of the function values of iterate to the optimal value of the

considered problem, where a ∈ (0.5, 1).

Corollary 4.11. Let {xn}
∞
n=0 and {vn}

∞
n=1 be the sequences generated by Algorithm 1. If the sequence

{αn}
∞
n=0 is given by

αn :=
1

(n + 1)a ,

for all n ≥ 0, where a ∈ (0.5, 1), then for a positive integer N ≥ 1, it holds that

min
1≤n≤N

φ(xn) − φ∗ ≤ O
( 1
N1−a

)
.

Proof. Let us note from Proposition 4.10 that

N∑
n=1

1
(n + 1)2a ≤

∫ N

0

1
(t + 1)2a dt ≤

1
2a + 1

,

and
N∑

n=1

1
(n + 1)a ≥

∫ N+1

1

1
(t + 1)a dt ≥

(N + 2)1−a − 21−a

1 − a
,
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which implies that N∑
n=1

1
(n + 1)a

−1

≤
1 − a

(N + 2)1−a − 21−a ≤ (1 − a) ·
1

(N+2)1−a−21−a

(N+3)1−a

· (N + 3)a−1.

Furthermore, we note that
(

N+2
N+3

)1−a
≥

(
3
4

)1−a
and

(
2

N+3

)1−a
≤

(
1
2

)1−a
, we have

 N∑
n=1

1
(n + 1)a

−1

≤
1 − a

(N + 2)1−a − 21−a ≤ (1 − a) ·
1(

3
4

)1−a
−

(
1
2

)1−a · (N + 3)a−1.

Hence, by putting M1 :=
2M
m

m∑
i=1

∞∑
n=1

εn,i and applying the inequality derived in Theorem 4.9, we

obtain that

min
1≤n≤N

φ(xn) − φ∗ ≤
dist2(v1, X∗) + M1 + 4cD

2
B2 ∑N

n=1 α
2
n

2
∑N

n=1 αn

≤
(1 − a)

2
·

dist2(v1, X∗) + M1 + 4cD
2
B2

2a+1(
3
4

)1−a
−

(
1
2

)1−a · (N + 3)a−1

≤ O

(
1

N1−a

)
,

and the proof is completed. �

5. Numerical example

In this section, we consider the numerical behaviors of the proposed method (Algorithm 1) for
solving the minimum-norm solution to the intersection of a finite number of closed balls and a box
constraint of the following form. Let ci ∈ R

k, i = 1, . . . ,m, be given vectors, and a, b ∈ R. The problem
is to find a vector x ∈ Rk that solves the problem

minimize 0.5‖x‖2,
subject to ‖x − ci‖ ≤ 1, i = 1, 2, . . . ,m,

x ∈ [a, b]k.

This problem can be written in another form as

minimize 0.5‖x‖2,

subject to x ∈ [a, b]k ∩

m⋂
i=1

Lev(‖x − ci‖ − 1, 0), (5.1)

which is clearly a particular situation of the problem (1.1) in the case when f (x) = 0.5‖x‖2, h(x) = 0,
gi(x) = ‖x − ci‖ − 1 for all i = 1, . . . ,m, and X0 = [0, 1.5]k.
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In the first experiment, we examine the influence of the step size αn := α
(n+1) . We perform

Algorithm 1 for solving the problem (5.1) when the number of target sets m = 1000. We set εn,i = 0
for all n ≥ 0 and i = 1, . . . ,m. We choose the vector ci by randomly choosing its coordinates in
the interval (1, 1.5), and the initial vector x0 is the vector whose all coordinates are 0.1. We consider
the parameter α ∈ [0.1, 0.9] in the step size αn and the dimensions k = 2, 5 and 10. We perform 10
independent random tests for each choice of α and k and terminate Algorithm 1 when the relative error
‖vn+1−vn‖

‖vn‖+1 reaches the optimal error tolerance of 10−5. The averaged results of computational runtimes in
seconds and the number of iterations and computational runtimes in seconds for each choice of α and
k are plotted in Figure 1. As we can see from Figure 1, for each dimension k, the parameter α = 0.1
gives the least number of iterations and computational runtimes.

Figure 1. Comparison of number of iterations and computational runtime for different
choices of step sizes αn := α

(n+1) .

In the following experiment, we examine the influence of the error tolerances {εn,i}
∞
n=1 for all i =

1, 2, . . . ,m. We consider the parameter ε = 0, 0.1, 0.3, 0.5, 0.7 and 0.9 in the error tolerance εn,i =
ε

(n+1)2 with various dimensions k and number of target sets m. It is noted that for this tested problem,
Algorithm 1 with ε = 0 is a particular case of the method proposed by Nedic and Necoara [10], where
the batch size is m. We set the step size αn := 0.1

(n+1) and performed the above experiment. The averaged
results of computational runtimes in seconds are given in Table 1.
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Table 1. Comparison of algorithm runtimes for different choices of error tolerances εn,i =
ε

(n+1)2 for all i = 1, . . . ,m.

k m ε = 0 ε = 0.1 ε = 0.3 ε = 0.5 ε = 0.7 ε = 0.9

1 50 0.1149 0.1047 0.1050 0.1049 0.1055 0.1049
100 0.2075 0.2181 0.2078 0.2102 0.2123 0.2076
500 1.0343 1.0512 1.0258 1.0838 1.0251 1.0256

2 50 0.1918 0.1913 0.1912 0.1912 0.1913 0.1911
100 0.5473 0.5369 0.5303 0.5298 0.5299 0.5290
500 4.1264 4.1254 4.1258 4.1381 4.1371 4.1382

3 50 0.2924 0.2920 0.2919 0.2913 0.2916 0.2912
100 0.9176 0.9173 0.9181 0.9155 0.9144 0.9146
500 6.2060 6.2058 6.2070 6.2039 6.2050 6.2054

4 50 0.3440 0.3440 0.3439 0.3444 0.3439 0.3439
100 0.8419 0.8418 0.8422 0.8428 0.8419 0.8417
500 5.9674 5.9638 5.9637 5.9644 5.9637 5.9645

5 50 0.3977 0.3973 0.3974 0.3978 0.3977 0.3976
100 0.8236 0.8245 0.8241 0.8246 0.8244 0.8256
500 9.7686 9.7669 9.7706 9.7702 9.7689 9.7716

10 50 0.5751 0.5698 0.5478 0.5472 0.5310 0.5144
100 1.4231 1.4067 1.3932 1.3783 1.3651 1.3489
500 10.3818 10.2863 10.2342 10.1825 10.1492 10.1352

20 50 2.2897 2.2592 2.2045 2.1485 2.1349 2.0676
100 5.6454 5.5774 5.4425 5.3605 5.3188 5.2937
500 14.6842 14.6564 14.6162 14.5711 14.5680 14.5123

30 50 4.1547 4.1089 4.0093 3.9392 3.8959 3.8518
100 6.4662 6.4111 6.3702 6.3347 6.2562 6.2411
500 16.6648 16.6611 16.6482 16.6586 16.6437 16.6342

40 50 7.0435 7.0567 6.9973 6.8546 6.9748 6.7436
100 9.9004 9.8689 9.8010 9.6928 9.6127 9.5034
500 24.9762 24.8886 24.8768 24.9037 24.8722 24.8628

One can see from the results presented in Table 1 that the averaged runtime increases for all k and m
increases. It can be seen that the proposed method with the error-tolerance parameter ε , 0 requires less
averaged runtimes compared to the case when ε = 0 for almost all the number of target sets m. Even if
we can not point out which choice of error-tolerance parameters ε , 0 yields the best performance for
all k and m, the results show us that the averaged runtime can be improved by some suitable choices of
error tolerances. This also underlines the benefit of the approximate subgradient-type method proposed
in this work.
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6. Conclusions

We concentrated on addressing the convex minimization problem across the intersection of a finite
number of convex level sets. Our approach centered on introducing the distributed approximate
subgradient method tailored to tackle this particular problem. To guarantee the convergence of our
proposed method, we provided a rigorous proof demonstrating that the sequences generated by the
method converge to an optimal solution. Furthermore, the O

(
1

N1−a

)
rate of convergence of the function

values of iterate to the optimal value of the considered problem, where a ∈ (0.5, 1). Additionally,
we illustrated our findings through several numerical examples aimed at examining the impact of
error tolerances. While identifying the optimal error tolerance remains a significant consideration, our
experimental results indicate that the average runtime can be enhanced by selecting suitable nonzero
error tolerances as opposed to omitting them altogether. This observation suggests an intriguing avenue
for future research exploration.
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