Research article Special Issues

Degenerate $ r $-truncated Stirling numbers

  • Received: 04 July 2023 Revised: 22 August 2023 Accepted: 31 August 2023 Published: 08 September 2023
  • MSC : 11B73, 11B83

  • For any positive integer $ r $, the $ r $-truncated (or $ r $-associated) Stirling number of the second kind $ S_{2}^{(r)}(n, k) $ enumerates the number of partitions of the set $ \{1, 2, 3, \dots, n\} $ into $ k $ non-empty disjoint subsets, such that each subset contains at least $ r $ elements. We introduce the degenerate $ r $-truncated Stirling numbers of the second kind and of the first kind. They are degenerate versions of the $ r $-truncated Stirling numbers of the second kind and of the first kind, and reduce to the degenerate Stirling numbers of the second kind and of the first kind for $ r = 1 $. Our aim is to derive recurrence relations for both of those numbers.

    Citation: Taekyun Kim, Dae San Kim, Jin-Woo Park. Degenerate $ r $-truncated Stirling numbers[J]. AIMS Mathematics, 2023, 8(11): 25957-25965. doi: 10.3934/math.20231322

    Related Papers:

  • For any positive integer $ r $, the $ r $-truncated (or $ r $-associated) Stirling number of the second kind $ S_{2}^{(r)}(n, k) $ enumerates the number of partitions of the set $ \{1, 2, 3, \dots, n\} $ into $ k $ non-empty disjoint subsets, such that each subset contains at least $ r $ elements. We introduce the degenerate $ r $-truncated Stirling numbers of the second kind and of the first kind. They are degenerate versions of the $ r $-truncated Stirling numbers of the second kind and of the first kind, and reduce to the degenerate Stirling numbers of the second kind and of the first kind for $ r = 1 $. Our aim is to derive recurrence relations for both of those numbers.



    加载中


    [1] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., 15 (1979), 51–88.
    [2] L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math. (Basel), 7 (1956), 28–33.
    [3] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, New York: American Mathematical Society, 1974. https://doi.org/10.2307/2005450
    [4] H. Connamacher, J. Dobrosotskaya, On the uniformity of the approximation for $r$-associated Stirling numbers of the second kind, Contrib. Discrete Math., 15 (2020), 25–42.
    [5] U. Duran, M. Acikgoz, On degenerate truncated special polynomials, Mathematics, 8 (2020), 144. https://doi.org/10.3390/math8010144 doi: 10.3390/math8010144
    [6] R. Fray, A generating function associated with the generalized Stirling numbers, Fibonacci Quart., 5 (1967), 356–366.
    [7] F. T. Howard, Associated Stirling numbers, Fibonacci Quart., 18 (1980), 303–315.
    [8] F. T. Howard, Congruences for the Stirling numbers and associated Stirling numbers, Acta Arith., 55 (1990), 29–41.
    [9] D. S. Kim, T. Kim, A note on a new type of degenerate Bernoulli numbers, Russ. J. Math. Phys., 27 (2020), 227–235. https://doi.org/10.1134/S1061920820020090 doi: 10.1134/S1061920820020090
    [10] T. Kim, D. S. Kim, On some degenerate differential and degenerate difference operators, Russ. J. Math. Phys., 29 (2022), 37–46. https://doi.org/10.1134/S1061920822010046 doi: 10.1134/S1061920822010046
    [11] T. Kim, D. S. Kim, Some identities on truncated polynomials associated with degenerate Bell polynomials, Russ. J. Math. Phys., 28 (2021), 342–355. https://doi.org/10.1134/S1061920821030079 doi: 10.1134/S1061920821030079
    [12] T. Kim, D. S. Kim, L. C. Jang, H. Lee, H. Kim, Representations of degenerate Hermite polynomials, Adv. Appl. Math., 139 (2022), 102359. https://doi.org/10.1016/j.aam.2022.102359 doi: 10.1016/j.aam.2022.102359
    [13] T. Kim, D. S. Kim, H. K. Kim, Normal ordering of degenerate integral powers of number operator and its applications, Appl. Math. Sci. Eng., 30 (2022), 440–447. https://doi.org/10.1080/27690911.2022.2083120 doi: 10.1080/27690911.2022.2083120
    [14] T. Kim, D. S. Kim, Degenerate zero-truncated Poisson random variables, Russ. J. Math. Phys., 28 (2021), 66–72. https://doi.org/10.1134/S1061920821010076 doi: 10.1134/S1061920821010076
    [15] T. K. Kim, D. S. Kim, Some identities involving degenerate Stirling numbers associated with several degenerate polynomials and numbers, Russ. J. Math. Phys., 30 (2023), 62–75. https://doi.org/10.1134/S1061920823010041 doi: 10.1134/S1061920823010041
    [16] I. Kucukoglu, Y. Simsek, Construction and computation of unified Stirling-type numbers emerging from p-adic integrals and symmetric polynomials, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 115 (2021), 167. https://doi.org/10.1007/s13398-021-01107-2 doi: 10.1007/s13398-021-01107-2
    [17] D. H. Lehmer, Numbers associated with Stirling numbers and Number theory, Rocky Mountain J. Math., 15 (1985), 461–479.
    [18] S. Roman, The Umbral Calculus, Berlin: Springer, 2005.
    [19] B. Simsek, Some identities and formulas derived from analysis of distribution functions including Bernoulli polynomials and Stirling numbers, Filomat, 34 (2020), 521–527. https://doi.org/10.2298/FIL2002521S doi: 10.2298/FIL2002521S
    [20] Y. Simsek, Identities associated with generalized Stirling type numbers and Eulerian type polynomials, Math. Comput. Appl., 18 (2013), 251–263. https://doi.org/10.3390/mca18030251 doi: 10.3390/mca18030251
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1028) PDF downloads(89) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog