Due to its significance in science and engineering, time-varying linear matrix equation (LME) problems have received a lot of attention from scholars. It is for this reason that the issue of finding the minimum-norm least-squares solution of the time-varying quaternion LME (ML-TQ-LME) is addressed in this study. This is accomplished using the zeroing neural network (ZNN) technique, which has achieved considerable success in tackling time-varying issues. In light of that, two new ZNN models are introduced to solve the ML-TQ-LME problem for time-varying quaternion matrices of arbitrary dimension. Two simulation experiments and two practical acoustic source tracking applications show that the models function superbly.
Citation: Vladislav N. Kovalnogov, Ruslan V. Fedorov, Igor I. Shepelev, Vyacheslav V. Sherkunov, Theodore E. Simos, Spyridon D. Mourtas, Vasilios N. Katsikis. A novel quaternion linear matrix equation solver through zeroing neural networks with applications to acoustic source tracking[J]. AIMS Mathematics, 2023, 8(11): 25966-25989. doi: 10.3934/math.20231323
Due to its significance in science and engineering, time-varying linear matrix equation (LME) problems have received a lot of attention from scholars. It is for this reason that the issue of finding the minimum-norm least-squares solution of the time-varying quaternion LME (ML-TQ-LME) is addressed in this study. This is accomplished using the zeroing neural network (ZNN) technique, which has achieved considerable success in tackling time-varying issues. In light of that, two new ZNN models are introduced to solve the ML-TQ-LME problem for time-varying quaternion matrices of arbitrary dimension. Two simulation experiments and two practical acoustic source tracking applications show that the models function superbly.
[1] | G. X. Huang, F. Yin, K. Guo, An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation AXB = C, J. Comput. Appl. Math, 212 (2008), 231–244. https://doi:10.1016/j.cam.2006.12.005 doi: 10.1016/j.cam.2006.12.005 |
[2] | S. D. Mourtas, V. N. Katsikis, C. Kasimis, Feedback control systems stabilization using a bio-inspired neural network, EAI Endorsed Trans. AI Robotics, 1 (2022), 1–13. |
[3] | J. Kurzak, A. Buttari, J. J. Dongarra, Solving systems of linear equations on the CELL processor using Cholesky factorization, IEEE Trans. Parallel Distributed Syst., 19 (2008), 1175–1186. |
[4] | Z. Zhang, Z. Yan, An adaptive fuzzy recurrent neural network for solving non-repetitive motion problem of redundant robot manipulators, IEEE Trans. Fuzzy Syst., 28 (2020), 684–691. https://doi.org/10.1109/TFUZZ.2019.2914618 doi: 10.1109/TFUZZ.2019.2914618 |
[5] | T. Sarkar, K. Siarkiewicz, R. Stratton, Survey of numerical methods for solution of large systems of linear equations for electromagnetic field problems, IEEE Trans. Antennas Propag., 29 (1981), 847–856. https://doi.org/10.1109/TAP.1981.1142695 doi: 10.1109/TAP.1981.1142695 |
[6] | L. Xiao, J. Tao, J. Dai, Y. Wang, L. Jia, Y. He, A parameter-changing and complex-valued zeroing neural-network for finding solution of time-varying complex linear matrix equations in finite time, IEEE T. Ind. Inform., 17 (2021), 6634–6643. https://doi.org/10.1109/TII.2021.3049413 doi: 10.1109/TII.2021.3049413 |
[7] | H. Alharbi, H. Jerbi, M. Kchaou, R. Abbassi, T. E. Simos, S. D. Mourtas, et al., Time-varying pseudoinversion based on full-rank decomposition and zeroing neural networks, Mathematics, 11 (2023), 600. |
[8] | Y. Zhang, S. S. Ge, Design and analysis of a general recurrent neural network model for time-varying matrix inversion, IEEE T. Neur. Network., 16 (2005), 1477–1490. https://doi.org/10.1109/TNN.2005.857946 doi: 10.1109/TNN.2005.857946 |
[9] | Y. Chai, H. Li, D. Qiao, S. Qin, J. Feng, A neural network for Moore-Penrose inverse of time-varying complex-valued matrices, Int. J. Comput. Intell. Syst., 13 (2020), 663–671. https://doi.org/10.2991/ijcis.d.200527.001 doi: 10.2991/ijcis.d.200527.001 |
[10] | Z. Sun, F. Li, L. Jin, T. Shi, K. Liu, Noise-tolerant neural algorithm for online solving time-varying full-rank matrix Moore-Penrose inverse problems: A control-theoretic approach, Neurocomputing, 413 (2020), 158–172. https://doi.org/10.1016/j.neucom.2020.06.050 doi: 10.1016/j.neucom.2020.06.050 |
[11] | W. Wu, B. Zheng, Improved recurrent neural networks for solving Moore-Penrose inverse of real-time full-rank matrix, Neurocomputing, 418 (2020), 221–231. https://doi.org/10.1016/j.neucom.2020.08.026 doi: 10.1016/j.neucom.2020.08.026 |
[12] | Y. Zhang, Y. Yang, N. Tan, B. Cai, Zhang neural network solving for time-varying full-rank matrix Moore-Penrose inverse, Computing, 92 (2011), 97–121. https://doi.org/10.1007/s00607-010-0133-9 doi: 10.1007/s00607-010-0133-9 |
[13] | S. Qiao, X. Z. Wang, Y. Wei, Two finite-time convergent Zhang neural network models for time-varying complex matrix Drazin inverse, Linear Algebra Appl., 542 (2018), 101–117. https://doi.org/10.1016/j.laa.2017.03.014 doi: 10.1016/j.laa.2017.03.014 |
[14] | S. Qiao, Y. Wei, X. Zhang, Computing time-varying ML-weighted pseudoinverse by the Zhang neural networks, Numer. Func. Anal. Opt., 41 (2020), 1672–1693. https://doi.org/10.1080/01630563.2020.1740887 doi: 10.1080/01630563.2020.1740887 |
[15] | X. Wang, P. S. Stanimirovic, Y. Wei, Complex ZFs for computing time-varying complex outer inverses, Neurocomputing, 275 (2018), 983–1001. https://doi.org/10.1016/j.neucom.2017.09.034 doi: 10.1016/j.neucom.2017.09.034 |
[16] | T. E. Simos, V. N. Katsikis, S. D. Mourtas, P. S. Stanimirović, D. Gerontitis, A higher-order zeroing neural network for pseudoinversion of an arbitrary time-varying matrix with applications to mobile object localization, Inf. Sci., 600 (2022), 226–238. https://doi.org/10.1016/j.ins.2022.03.094 doi: 10.1016/j.ins.2022.03.094 |
[17] | M. Zhou, J. Chen, P. S. Stanimirovic, V. N. Katsikis, H. Ma, Complex varying-parameter Zhang neural networks for computing core and core-EP inverse, Neural Process. Lett., 51 (2020), 1299–1329. https://doi.org/10.1007/s11063-019-10141-6 doi: 10.1007/s11063-019-10141-6 |
[18] | J. Liu, H. Cai, C. Jiang, X. Han, Z. Zhang, An interval inverse method based on high dimensional model representation and affine arithmetic, Appl. Math. Model., 63 (2018), 732–743. https://doi.org/10.1016/j.apm.2018.07.009 doi: 10.1016/j.apm.2018.07.009 |
[19] | S. D. Mourtas, V. N. Katsikis, Exploiting the Black-Litterman framework through error-correction neural networks, Neurocomputing, 498 (2022), 43–58. https://doi.org/10.1016/j.neucom.2022.05.036 doi: 10.1016/j.neucom.2022.05.036 |
[20] | V. N. Kovalnogov, R. V. Fedorov, D. A. Generalov, A. V. Chukalin, V. N. Katsikis, S. D. Mourtas, et al., Portfolio insurance through error-correction neural networks, Mathematics, 10 (2022), 3335. |
[21] | S. D. Mourtas, C. Kasimis, Exploiting mean-variance portfolio optimization problems through zeroing neural networks, Mathematics, 10 (2022), 3079. https://doi.org/10.3390/math10173079 doi: 10.3390/math10173079 |
[22] | W. Jiang, C. L. Lin, V. N. Katsikis, S. D. Mourtas, P. S. Stanimirović, T. E. Simos, Zeroing neural network approaches based on direct and indirect methods for solving the Yang–Baxter-like matrix equation, Mathematics, 10 (2022), 1950. https://doi.org/10.3390/math10111950 doi: 10.3390/math10111950 |
[23] | H. Jerbi, H. Alharbi, M. Omri, L. Ladhar, T. E. Simos, S. D. Mourtas, V. N. Katsikis, Towards higher-order zeroing neural network dynamics for solving time-varying algebraic Riccati equations, Mathematics, 10 (2022), 4490. https://doi.org/10.3390/math10234490 doi: 10.3390/math10234490 |
[24] | V. N. Katsikis, P. S. Stanimirović, S. D. Mourtas, L. Xiao, D. Karabasević, D. Stanujkić, Zeroing neural network with fuzzy parameter for computing pseudoinverse of arbitrary matrix, IEEE T. Fuzzy Syst., 30 (2022), 3426–3435. https://doi.org/10.1109/TFUZZ.2021.3115969 doi: 10.1109/TFUZZ.2021.3115969 |
[25] | Y. Zhang, S. Li, J. Weng, B. Liao, GNN model for time-varying matrix inversion with robust finite-time convergence, IEEE T. Neur. Net. Lear., (2022), 1–11. https://doi.org/10.1109/TNNLS.2022.3175899 doi: 10.1109/TNNLS.2022.3175899 |
[26] | Y. Zhang, Improved GNN method with finite-time convergence for time-varying Lyapunov equation, Inf. Sci., 611 (2022), 494–503. https://doi.org/10.1016/j.ins.2022.08.061 doi: 10.1016/j.ins.2022.08.061 |
[27] | W. R. Hamilton, On a new species of imaginary quantities, connected with the theory of quaternions, P. Royal Irish Acad., 2 (1840), 424–434. https://www.jstor.org/stable/20520177 |
[28] | M. Joldeş, J. M. Muller, Algorithms for manipulating quaternions in floating-point arithmetic, In: 2020 IEEE 27th Symposium on Computer Arithmetic (ARITH), IEEE, 2020, 48–55. |
[29] | E. Özgür, Y. Mezouar, Kinematic modeling and control of a robot arm using unit dual quaternions, Robot. Auton. Syst., 77 (2016), 66–73. https://doi.org/10.1016/j.robot.2015.12.005 doi: 10.1016/j.robot.2015.12.005 |
[30] | G. Du, Y. Liang, B. Gao, S. A. Otaibi, D. Li, A cognitive joint angle compensation system based on self-feedback fuzzy neural network with incremental learning, IEEE T. Ind. Inform., 17 (2021), 2928–2937. https://doi.org/10.1109/TII.2020.3003940 doi: 10.1109/TII.2020.3003940 |
[31] | A. Szynal-Liana, I. Włoch, Generalized commutative quaternions of the Fibonacci type, Boletín de la Sociedad Matemática Mexicana, 28 (2022), 1. https://doi.org/10.1007/s40590-021-00386-4 doi: 10.1007/s40590-021-00386-4 |
[32] | D. Pavllo, C. Feichtenhofer, M. Auli, D. Grangier, Modeling human motion with quaternion-based neural networks, Int. J. Comput. Vision, 128 (2020), 855–872. https://doi.org/10.1007/s11263-019-01207-y doi: 10.1007/s11263-019-01207-y |
[33] | A. M. S. Goodyear, P. Singla, D. B. Spencer, Analytical state transition matrix for dual-quaternions for spacecraft pose estimation, In: AAS/AIAA Astrodynamics Specialist Conference, 2019, Univelt Inc., 2020,393–411. |
[34] | M. E. Kansu, Quaternionic representation of electromagnetism for material media, Int. J. Geom. Methods M., 16 (2019), 1950105. https://doi.org/10.1142/S0219887819501056 doi: 10.1142/S0219887819501056 |
[35] | S. Giardino, Quaternionic quantum mechanics in real Hilbert space, J. Geom. Phys., 158 (2020), 103956. https://doi.org/10.1142/S0219887819501056 doi: 10.1142/S0219887819501056 |
[36] | Z. H. Weng, Field equations in the complex quaternion spaces, Adv. Math. Phys., 2014. |
[37] | R. Ghiloni, V. Moretti, A. Perotti, Continuous slice functional calculus in quaternionic Hilbert spaces, Rev. Math. Phys., 25 (2013), 1350006. https://doi.org/10.1142/S0219887819501056 doi: 10.1142/S0219887819501056 |
[38] | L. Xiao, S. Liu, X. Wang, Y. He, L. Jia, Y. Xu, Zeroing neural networks for dynamic quaternion-valued matrix inversion, IEEE Trans. Ind. Inform., 18 (2022), 1562–1571. |
[39] | L. Xiao, W. Huang, X. Li, F. Sun, Q. Liao, L. Jia, et al., ZNNs with a varying-parameter design formula for dynamic Sylvester quaternion matrix equation, IEEE T. Neur. Network. Lear., (2022), 1–11. |
[40] | L. Xiao, P. Cao, W. Song, L. Luo, W. Tang, A fixed-time noise-tolerance ZNN model for time-variant inequality-constrained quaternion matrix least-squares problem, IEEE T. Neur. Network. Lear., (2023), 1–10. https://doi.org/10.1109/TNNLS.2023.3242313 doi: 10.1109/TNNLS.2023.3242313 |
[41] | L. Xiao, Y. Zhang, W. Huang, L. Jia, X. Gao, A dynamic parameter noise-tolerant zeroing neural network for time-varying quaternion matrix equation with applications, IEEE T. Neur. Network. Lear., (2022), 1–10. |
[42] | R. Abbassi, H. Jerbi, M. Kchaou, T. E. Simos, S. D. Mourtas, V. N. Katsikis, Towards higher-order zeroing neural networks for calculating quaternion matrix inverse with application to robotic motion tracking, Mathematics, 11 (2023), 2756. https://doi.org/10.3390/math11122756 doi: 10.3390/math11122756 |
[43] | N. Tan, P. Yu, F. Ni, New varying-parameter recursive neural networks for model-free kinematic control of redundant manipulators with limited measurements, IEEE T. Instru. Meas., 71 (2022), 1–14. https://doi.org/10.1109/TIM.2022.3161713 doi: 10.1109/TIM.2022.3161713 |
[44] | V. N. Kovalnogov, R. V. Fedorov, D. A. Demidov, M. A. Malyoshina, T. E. Simos, V. N. Katsikis, et al., Zeroing neural networks for computing quaternion linear matrix equation with application to color restoration of images, AIMS Math., 8 (2023), 14321–14339. https://doi.org/10.3934/math.2023733 doi: 10.3934/math.2023733 |
[45] | P. S. Stanimirović, S. D. Mourtas, V. N. Katsikis, L. A. Kazakovtsev, V. N. Krutikov, Recurrent neural network models based on optimization methods, Mathematics, 10 (2022), 4292. https://doi.org/10.3390/math10224292 doi: 10.3390/math10224292 |
[46] | F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl., 251 (1997), 21–57. https://doi.org/10.1016/0024-3795(95)00543-9 doi: 10.1016/0024-3795(95)00543-9 |
[47] | J. Groß, G. Trenkler, S. O. Troschke, Quaternions: Further contributions to a matrix oriented approach, Linear Algebra Appl., 326 (2001), 205–213. https://doi.org/10.1016/S0024-3795(00)00283-4 doi: 10.1016/S0024-3795(00)00283-4 |
[48] | J. Dai, P. Tan, X. Yang, L. Xiao, L. Jia, Y. He, A fuzzy adaptive zeroing neural network with superior finite-time convergence for solving time-variant linear matrix equations, Knowl. Based Syst., 242 (2022), 108405. https://doi.org/10.1016/j.knosys.2022.108405 doi: 10.1016/j.knosys.2022.108405 |
[49] | L. Xiao, H. Tan, J. Dai, L. Jia, W. Tang, High-order error function designs to compute time-varying linear matrix equations, Inform. Sciences, 576 (2021), 173–186. https://doi.org/10.1016/j.ins.2021.06.038 doi: 10.1016/j.ins.2021.06.038 |
[50] | N. Zhong, Q. Huang, S. Yang, F. Ouyang, Z. Zhang, A varying-parameter recurrent neural network combined with penalty function for solving constrained multi-criteria optimization scheme for redundant robot manipulators, IEEE Access, 9 (2021), 50810–50818. https://doi.org/10.1109/ACCESS.2021.3068731 doi: 10.1109/ACCESS.2021.3068731 |
[51] | A. K. Gupta, Numerical methods using MATLAB, MATLAB solutions series, Apress: Berkeley, CA, USA, New York, NY, 2014. |
[52] | L. Jin, J. Yan, X. Du, X. Xiao, D. Fu, RNN for solving time-variant generalized Sylvester equation with applications to robots and acoustic source localization, IEEE Trans. Ind. Inform., 16 (2020), 6359–6369. https://doi.org/10.1109/TII.2020.2964817 doi: 10.1109/TII.2020.2964817 |
[53] | K. Kim, S. Wang, H. Ryu, S. Q. Lee, Acoustic-based position estimation of an object and a person using active localization and sound field analysis, Appl. Sci., 10 (2020), 9090. https://doi.org/10.3390/app10249090 doi: 10.3390/app10249090 |
[54] | P. Du, S. Zhang, C. Chen, A. Alphones, W. D. Zhong, Demonstration of a low-complexity indoor visible light positioning system using an enhanced TDOA scheme, IEEE Photon. J., 10 (2018), 1–10. https://doi.org/10.1109/JPHOT.2018.2840681 doi: 10.1109/JPHOT.2018.2840681 |
[55] | A. G. Dempster, E. Cetin, Interference localization for satellite navigation systems, Proc. IEEE, 104 (2016), 1318–1326. https://doi.org/10.1109/JPROC.2016.2530814 doi: 10.1109/JPROC.2016.2530814 |
[56] | J. Tiemann, F. Eckermann, C. Wietfeld, ATLAS - an open-source TDOA-based ultra-wideband localization system, In: Int. Conf. Indoor Positioning Indoor Navigat. (IPIN) (ed. A. de Henares), Spain, 2016. |
[57] | Y. Zhang, L. Jin, Robot Manipulator Redundancy Resolution, John Wiley Sons: Hoboken, NJ, USA, 2017. |