The paper deals with the third-order quaternion tensor equation. Based on the Qt multiplication operation, we derive solvability conditions and also get the general solution, the least-squares solution, the minimum-norm solution and the minimum-norm least-squares solution of the tensor equation $ \mathcal{A} \ast_{\mathbb{Q}} \mathcal{X} = \mathcal{B} $. Finally, two numerical examples are presented.
Citation: Xiaohan Li, Xin Liu, Jing Jiang, Jian Sun. Some solutions to a third-order quaternion tensor equation[J]. AIMS Mathematics, 2023, 8(11): 27725-27741. doi: 10.3934/math.20231419
The paper deals with the third-order quaternion tensor equation. Based on the Qt multiplication operation, we derive solvability conditions and also get the general solution, the least-squares solution, the minimum-norm solution and the minimum-norm least-squares solution of the tensor equation $ \mathcal{A} \ast_{\mathbb{Q}} \mathcal{X} = \mathcal{B} $. Finally, two numerical examples are presented.
[1] | S. D. Leo, G. Scolarici, Right eigenvalue equation in quaternionic quantum mechanics, J. Phys. A Math. Gen., 33 (2000), 2971–2995. http://dx.doi.org/10.1088/0305-4470/33/15/306 doi: 10.1088/0305-4470/33/15/306 |
[2] | N. L. Bihan, S. J. Sangwine, Quaternion principal component analysis of color images, In: Proceedings of the IEEE Conference on Image Processing (ICIP), 1 (2003), 903–908. http://dx.doi.org/10.1109/ICIP.2003.1247085 |
[3] | S. J. Sangwine, N. L. Bihan, Quaternion singular value decomposition based on bidiagonalization to a real or complex matrix using quaternion Householder transformations, Appl. Math. Comput., 182 (2006), 727–738. https://doi.org/10.1016/j.amc.2006.04.032 doi: 10.1016/j.amc.2006.04.032 |
[4] | A. K. Smilde, P. Geladi, R. Bro, Multi-way Analysis: Applications in the Chemical Sciences, Hoboken: Wiley, 2005. |
[5] | P. Soto-Quiros, A least-squares problem of a linear tensor equation of third-order for Audio and color image processing, In: 2022 45th International Conference on Telecommunications and Signal Processing, 2022, 59–65. https://doi.org/10.1109/TSP55681.2022.9851367 |
[6] | L. Reichel, U. O. Ugwu, Tensor Krylov subspace methods with an invertible linear transform product applied to image processing, Appl. Numer. Math., 166 (2021), 186–207. https://doi.org/10.1016/j.apnum.2021.04.007 doi: 10.1016/j.apnum.2021.04.007 |
[7] | M. E. Guide, A. E. Ichi, K. Jbilou, R. Sadaka, On tensor GMRES and Golub-Kahan methods via the t-product for color image processing, Electron. J. Linear Algebra, 37 (2021), 524–543. https://doi.org/10.13001/ela.2021.5471 doi: 10.13001/ela.2021.5471 |
[8] | P. Soto-Quiros, Convergence analysis of iterative methods for computing the T-pseudoinverse of complete full-rank third-order tensors based on the T-product, Results Appl. Math., 18 (2023), 100372. https://doi.org/10.1016/j.rinam.2023.100372 doi: 10.1016/j.rinam.2023.100372 |
[9] | H. Jin, M. Bai, J. Benitez, X. Liu, The generalized inverses of tensors and an application to linear models, Comput. Math. Appl., 74 (2017), 385–397. https://doi.org/10.1016/j.camwa.2017.04.017 doi: 10.1016/j.camwa.2017.04.017 |
[10] | Z. Z. Qin, Z. Y. Ming, L. P. Zhang, Singular value decomposition of third order quaternion tensors, Appl. Math. Letters, 123 (2022), 107597. https://doi.org/10.1016/j.aml.2021.107597 doi: 10.1016/j.aml.2021.107597 |
[11] | M. M. Zheng, G. Ni, Approximation strategy based on the T-product for third-order quaternion tensors with application to color video compression, Appl. Math. Letters, 140 (2023), 108587. https://doi.org/10.1016/j.aml.2023.108587 doi: 10.1016/j.aml.2023.108587 |
[12] | X. F. Zhang, T. Li, Y. G. Ou, Iterative solutions of generalized Sylvester quaternion tensor equations, Linear Multilinear Algebra, 2023. https://doi.org/10.1080/03081087.2023.2176416 |
[13] | X. F. Zhang, W. Ding, T. Li, Tensor form of GPBiCG algorithm for solving the generalized Sylvester quaternion tensor equations, J. Franklin Inst., 360 (2023), 5929–5946. https://doi.org/10.1016/j.jfranklin.2023.04.009 doi: 10.1016/j.jfranklin.2023.04.009 |
[14] | G. H. Golub, C. F. V. Loan, Matrix Computations, Baltimore: Johns Hopkins University Press, 1996. |
[15] | N. S. Urquhart, Computation of generalized inverse matrices which satisfy specified conditions, SIAM Rev., 10 (1968), 216–218. |
[16] | A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications, Berlin: Springer-Verlag, 1974. |