In this article, we consider a three dimensional compressible Navier-Stokes-Korteweg equations with the effect of external potential force. Under the smallness assumptions on both the external potential force and the initial perturbation of the stationary solution in $ H^2(\mathbb{R}^3)\times H^1(\mathbb{R}^3) $, we prove the global existence and regularity of strong solutions for the Navier-Stokes-Korteweg equations.
Citation: Kaile Chen, Yunyun Liang, Nengqiu Zhang. Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force[J]. AIMS Mathematics, 2023, 8(11): 27712-27724. doi: 10.3934/math.20231418
In this article, we consider a three dimensional compressible Navier-Stokes-Korteweg equations with the effect of external potential force. Under the smallness assumptions on both the external potential force and the initial perturbation of the stationary solution in $ H^2(\mathbb{R}^3)\times H^1(\mathbb{R}^3) $, we prove the global existence and regularity of strong solutions for the Navier-Stokes-Korteweg equations.
[1] | R. Adams, J. Fournier, Sobolev spaces, New York: Academic Press, 1975. |
[2] | D. Anderson, G. Mcfadden, A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30 (1998), 139–165. http://dx.doi.org/10.1146/annurev.fluid.30.1.139 doi: 10.1146/annurev.fluid.30.1.139 |
[3] | D. Bresch, B. Desjardins, C. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Part. Diff. Eq., 28 (2003), 843–868. http://dx.doi.org/10.1081/PDE-120020499 doi: 10.1081/PDE-120020499 |
[4] | D. Bresch, B. Desjardins, B. Ducomet, Quasi-neutral limit for a viscous capillary model of plasma, Ann. I. H. Poincare-An., 22 (2005), 1–9. http://dx.doi.org/10.1016/j.anihpc.2004.02.001 doi: 10.1016/j.anihpc.2004.02.001 |
[5] | J. Cahn, J. Hilliard, Free energy of a nonuniform system, I, interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. http://dx.doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102 |
[6] | N. Chikami, T. Kobayashi, Global well-posedness and time-decay estimates of the compressible Navier-Stokes-Korteweg system in critical Besov spaces, J. Math. Fluid Mech., 21 (2019), 31. http://dx.doi.org/10.1007/s00021-019-0431-8 doi: 10.1007/s00021-019-0431-8 |
[7] | J. Dunn, J. Serrin, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal., 88 (1985), 95–133. http://dx.doi.org/10.1007/BF00250907 doi: 10.1007/BF00250907 |
[8] | R. Danchin, B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type, Ann. I. H. Poincare-An., 18 (2001), 97–133. http://dx.doi.org/10.1016/S0294-1449(00)00056-1 doi: 10.1016/S0294-1449(00)00056-1 |
[9] | R. Duan, S. Ukai, T. Yang, H. Zhao, Optimal convergence rates for the compressible Navier-Stokes equations with potential forces, Math. Mod. Meth. Appl. Sci., 17 (2007), 737–758. http://dx.doi.org/10.1142/S021820250700208X doi: 10.1142/S021820250700208X |
[10] | M. Gurtin, D. Polignone, J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Mod. Meth. Appl. Sci., 6 (1996), 815–831. http://dx.doi.org/10.1142/S0218202596000341 doi: 10.1142/S0218202596000341 |
[11] | H. Hattori, D. Li, Solutions for two-dimensional system for materials of Korteweg type, SIAM J. Math. Anal., 25 (1994), 85–98. http://dx.doi.org/10.1137/S003614109223413X doi: 10.1137/S003614109223413X |
[12] | H. Hattori, D. Li, Global solutions of a high dimensional system for Korteweg materials, J. Math. Anal. Appl., 198 (1996), 84–97. http://dx.doi.org/10.1006/jmaa.1996.0069 doi: 10.1006/jmaa.1996.0069 |
[13] | B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type, J. Math. Fluid Mech., 13 (2011), 223–249. http://dx.doi.org/10.1007/s00021-009-0013-2 doi: 10.1007/s00021-009-0013-2 |
[14] | X. Han, Y. Qin, W. Sun, Stability of a one-dimensional full viscous quantum hydrodynamic system, arXiv: 2306.17495. |
[15] | X. Hou, H. Peng, C. Zhu, Global classical solutions to a 3D Navier-Stokes-Korteweg equations with small initial energy, Anal. Appl., 16 (2018), 55–84. http://dx.doi.org/10.1142/S0219530516500123 doi: 10.1142/S0219530516500123 |
[16] | M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type, Ann. I. H. Poincare-An., 25 (2008), 679–696. http://dx.doi.org/10.1016/j.anihpc.2007.03.005 doi: 10.1016/j.anihpc.2007.03.005 |
[17] | Y. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force, J. Math. Anal. Appl., 388 (2012), 1218–1232. http://dx.doi.org/10.1016/j.jmaa.2011.11.006 doi: 10.1016/j.jmaa.2011.11.006 |
[18] | Y. Li, W. Yong, Quasi-neutral limit in a 3D compressible Navier-Stokes-Poisson-Korteweg model, J. Appl. Math., 80 (2015), 712–727. http://dx.doi.org/10.1093/imamat/hxu008 doi: 10.1093/imamat/hxu008 |
[19] | K. Li, X. Shu, X. Xu, Global existence of strong solutions to compressible Navier-Stokes system with degenerate heat conductivity in unbounded domains, Math. Method. Appl. Sci., 43 (2020), 1543–1554. http://dx.doi.org/10.1002/mma.5969 doi: 10.1002/mma.5969 |
[20] | A. Matsumura, T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad., 55 (1979), 337–342. http://dx.doi.org/10.3792/pjaa.55.337 doi: 10.3792/pjaa.55.337 |
[21] | W. Sun, T. Caraballo, X. Han, P. Kloeden, A free boundary tumor model with time dependent nutritional supply, Nonlinear Anal.-Real, 53 (2020), 103063. http://dx.doi.org/10.1016/j.nonrwa.2019.103063 doi: 10.1016/j.nonrwa.2019.103063 |
[22] | W. Sun, J. Cheng, X. Han, Random attractors for 2D stochastic micropolar fluid flows on unbounded domains, Discrete Cont. Dyn.-B, 26 (2021), 693–716. http://dx.doi.org/10.3934/dcdsb.2020189 doi: 10.3934/dcdsb.2020189 |
[23] | W. Sun, Y. Li, X. Han, The full viscous quantum hydrodynamic system in one dimensional space, J. Math. Phys., 64 (2023), 011501. http://dx.doi.org/10.1063/5.0125284 doi: 10.1063/5.0125284 |
[24] | Z. Tan, H. Wang, J. Xu, Global existence and optimal L2 decay rate for the strong solutions to the compressible fluid model of Korteweg type, J. Math. Anal. Appl., 390 (2012), 181–187. http://dx.doi.org/10.1016/j.jmaa.2012.01.028 doi: 10.1016/j.jmaa.2012.01.028 |
[25] | Z. Tan, R. Zhang, Optimal decay rates of the compressible fluid models of Korteweg type, Z. Angew. Math. Phys., 65 (2014), 279–300. http://dx.doi.org/10.1007/s00033-013-0331-3 doi: 10.1007/s00033-013-0331-3 |
[26] | K. Tsuda, Existence and stability of time periodic solution to the compressible Navier-Stokes-Korteweg system on $\mathbb{R}^3$, J. Math. Fluid Mech., 18 (2016), 157–185. http://dx.doi.org/10.1007/s00021-015-0244-3 doi: 10.1007/s00021-015-0244-3 |
[27] | Y. Wang, Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type, J. Math. Anal. Appl., 379 (2011), 256–271. http://dx.doi.org/10.1016/j.jmaa.2011.01.006 doi: 10.1016/j.jmaa.2011.01.006 |
[28] | W. Wang, W. Wang, Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces, Discrete Cont. Dyn., 35 (2015), 513–536. http://dx.doi.org/10.3934/dcds.2015.35.513 doi: 10.3934/dcds.2015.35.513 |
[29] | C. Zhao, T. Caraballo, Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations, J. Differ. Equations, 266 (2019), 7205–7229. http://dx.doi.org/10.1016/j.jde.2018.11.032 doi: 10.1016/j.jde.2018.11.032 |
[30] | C. Zhao, Y. Li, T. Caraballo, Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications, J. Differ. Equations, 269 (2020), 467–494. http://dx.doi.org/10.1016/j.jde.2019.12.011 doi: 10.1016/j.jde.2019.12.011 |