In this paper, we investigate the existence of solutions to a generalized quasilinear Schrödinger equation with concave-convex nonlinearities and potentials vanishing at infinity. Using the mountain pass theorem, we get the existence of a positive solution.
Citation: Xiaojie Guo, Zhiqing Han. Existence of solutions to a generalized quasilinear Schrödinger equation with concave-convex nonlinearities and potentials vanishing at infinity[J]. AIMS Mathematics, 2023, 8(11): 27684-27711. doi: 10.3934/math.20231417
In this paper, we investigate the existence of solutions to a generalized quasilinear Schrödinger equation with concave-convex nonlinearities and potentials vanishing at infinity. Using the mountain pass theorem, we get the existence of a positive solution.
[1] | J. F. L. Aires, M. A. S. Souto, Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials, J. Math. Anal. Appl., 416 (2014), 924–946. http://doi.org/10.1016/j.jmaa.2014.03.018 doi: 10.1016/j.jmaa.2014.03.018 |
[2] | C. O. Alves, M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differ. Equations, 254 (2013), 1977–1991. http://doi.org/10.1016/j.jde.2012.11.013 doi: 10.1016/j.jde.2012.11.013 |
[3] | A. Ambrosetti, V. Felli, A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117–144. http://doi.org/10.4171/JEMS/24 doi: 10.4171/JEMS/24 |
[4] | A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7 |
[5] | A. De Bouard, N. Hayashi, J. C. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189 (1997), 73–105. https://doi.org/10.1007/s002200050191 doi: 10.1007/s002200050191 |
[6] | J. H. Chen, X. J. Huang, B. T. Cheng, Positive solutions for a class of quasilinear Schrödinger equations with superlinear condition, Appl. Math. Lett., 87 (2019), 165–171. https://doi.org/10.1016/j.aml.2018.07.035 doi: 10.1016/j.aml.2018.07.035 |
[7] | J. H. Chen, X. H. Tang, B. T. Cheng, Non-Nehari manifold method for a class of generalized quasilinear Schrödinger equations, Appl. Math. Lett., 74 (2017), 20–26. http://doi.org/10.1016/j.aml.2017.04.032 doi: 10.1016/j.aml.2017.04.032 |
[8] | S. T. Chen, X. H. Tang, Ground state solutions for generalized quasilinear Schrödinger equations with variable potentials and Berestycki-Lions nonlinearities, J. Math. Phys., 59 (2018), 081508. https://doi.org/10.1063/1.5036570 doi: 10.1063/1.5036570 |
[9] | S. X. Chen, X. Wu, Existence of positive solutions for a class of quasilinear Schrödinger equations of Choquard type, J. Math. Anal. Appl., 475 (2019), 1754–1777. https://doi.org/10.1016/j.jmaa.2019.03.051 doi: 10.1016/j.jmaa.2019.03.051 |
[10] | Y. B. Deng, S. J. Peng, S. S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differ. Equations, 258 (2015), 115–147. http://doi.org/10.1016/j.jde.2014.09.006 doi: 10.1016/j.jde.2014.09.006 |
[11] | Y. B. Deng, W. Shuai, Positive solutions for quasilinear schrödinger equations with critical growth and potential vanishing at infinity, Commun. Pure Appl. Anal., 13 (2014), 2273–2287. https://doi.org/10.3934/cpaa.2014.13.2273 doi: 10.3934/cpaa.2014.13.2273 |
[12] | I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. https://doi.org/10.1016/0022-247X(74)90025-0 doi: 10.1016/0022-247X(74)90025-0 |
[13] | X. D. Fang, A positive solution for an asymptotically cubic quasilinear Schrödinger equation, Commun. Pure Appl. Anal., 18 (2019), 51–64. https://doi.org/10.3934/cpaa.2019004 doi: 10.3934/cpaa.2019004 |
[14] | M. F. Furtado, E. D. Silva, M. L. Silva, Existence of solution for a generalized quasilinear elliptic problem, J. Math. Phys., 58 (2017), 031503. http://doi.org/10.1063/1.4977480 doi: 10.1063/1.4977480 |
[15] | M. F. Furtado, E. D. Silva, M. L. Silva, Soliton solutions for a generalized quasilinear elliptic problem, Potential Anal., 53 (2020), 1097–1122. https://doi.org/10.1007/s11118-019-09799-3 doi: 10.1007/s11118-019-09799-3 |
[16] | R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B Condens. Matter, 37 (1980), 83–87. http://doi.org/10.1007/BF01325508 doi: 10.1007/BF01325508 |
[17] | A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, Magnetic solitons, Phys. Rep., 194 (1990), 117–238. https://doi.org/10.1016/0370-1573(90)90130-T |
[18] | S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Jpn., 50 (1981), 3262–3267. https://doi.org/10.1143/JPSJ.50.3262 doi: 10.1143/JPSJ.50.3262 |
[19] | E. W. Laedke, K. H. Spatschek, L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764–2769. https://doi.org/10.1063/1.525675 doi: 10.1063/1.525675 |
[20] | F. Y. Li, X. L. Zhu, Z. P. Liang, Multiple solutions to a class of generalized quasilinear Schrödinger equations with a Kirchhoff-type perturbation, J. Math. Anal. Appl., 443 (2016), 11–38. https://doi.org/10.1016/j.jmaa.2016.05.005 doi: 10.1016/j.jmaa.2016.05.005 |
[21] | Z. Li, Existence of positive solutions for a class of $p$-Laplacian type generalized quasilinear Schrödinger equations with critical growth and potential vanishing at infinity, Electron. J. Qual. Theory Differ. Equations, 2023 (2023), 3. https://doi.org/10.14232/ejqtde.2023.1.3 doi: 10.14232/ejqtde.2023.1.3 |
[22] | H. D. Liu, L. G. Zhao, Existence results for quasilinear Schrödinger equations with a general nonlinearity, Commun. Pure Appl. Anal., 19 (2020), 3429–3444. https://doi.org/10.3934/cpaa.2020059 doi: 10.3934/cpaa.2020059 |
[23] | J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, II, J. Differ. Equations, 187 (2003), 473–493. https://doi.org/10.1016/S0022-0396(02)00064-5 doi: 10.1016/S0022-0396(02)00064-5 |
[24] | J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Partial Differ. Equations, 29 (2004), 879–890. https://doi.org/10.1081/PDE-120037335 doi: 10.1081/PDE-120037335 |
[25] | Y. Meng, X. J. Huang, J. H. Chen, Positive solutions for a class of generalized quasilinear Schrödinger equations involving concave and convex nonlinearities in Orlicz space, Electron. J. Qual. Theory Differ. Equations, 2021 (2021), 87. https://doi.org/10.14232/ejqtde.2021.1.87 doi: 10.14232/ejqtde.2021.1.87 |
[26] | A. Nakamura, Damping and modification of exciton solitary waves, J. Phys. Soc. Jpn., 42 (1977), 1824–1835. http://doi.org/10.1143/JPSJ.42.1824 doi: 10.1143/JPSJ.42.1824 |
[27] | J. C. O. Junior, S. I. Moreira, Generalized quasilinear equations with sign-changing unbounded potential, Appl. Anal., 101 (2022), 3192–3209. https://doi.org/10.1080/00036811.2020.1836356 doi: 10.1080/00036811.2020.1836356 |
[28] | G. R. W. Quispel, H. W. Capel, Equation of motion for the Heisenberg spin chain, Phys. A, 110 (1982), 41–80. https://doi.org/10.1016/0378-4371(82)90104-2 doi: 10.1016/0378-4371(82)90104-2 |
[29] | U. B. Severo, D. De S. Germano, Asymptotically periodic quasilinear Schrödinger equations with critical exponential growth, J. Math. Phys., 62 (2021), 111509. https://doi.org/10.1063/5.0053794 doi: 10.1063/5.0053794 |
[30] | Y. T. Shen, Y. J. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal., 80 (2013), 194–201. https://doi.org/10.1016/j.na.2012.10.005 doi: 10.1016/j.na.2012.10.005 |
[31] | E. A. B. Silva, G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differ. Equations, 39 (2010), 1–33. https://doi.org/10.1007/s00526-009-0299-1 doi: 10.1007/s00526-009-0299-1 |
[32] | Y. Su, Positive solution to Schrödinger equation with singular potential and double critical exponents, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., 31 (2020), 667–698. https://doi.org/10.4171/RLM/910 doi: 10.4171/RLM/910 |
[33] | Y. Su, Z. S. Feng, Fractional Sobolev embedding with radial potential, J. Differ. Equations, 340 (2022), 1–44. https://doi.org/10.1016/j.jde.2022.08.030 doi: 10.1016/j.jde.2022.08.030 |
[34] | Y. Su, Z. S. Feng, Lions-type theorem of the $p$-Laplacian and applications, Adv. Nonlinear Anal., 10 (2021), 1178–1200. https://doi.org/10.1515/anona-2020-0167 doi: 10.1515/anona-2020-0167 |
[35] | Y. Su, H. X. Shi, Quasilinear Choquard equation with critical exponent, J. Math. Anal. Appl., 508 (2022), 125826. https://doi.org/10.1016/j.jmaa.2021.125826 doi: 10.1016/j.jmaa.2021.125826 |
[36] | Y. J. Wang, Y. X. Yao, Standing waves for quasilinear Schrödinger equations, J. Math. Anal. Appl., 400 (2013), 305–310. https://doi.org/10.1016/j.jmaa.2012.11.054 doi: 10.1016/j.jmaa.2012.11.054 |