Research article

Fixed points of generalized $ \varphi $-concave-convex operators with mixed monotonicity and applications

  • Received: 03 September 2024 Revised: 27 October 2024 Accepted: 07 November 2024 Published: 15 November 2024
  • MSC : 47H10

  • In this paper, we introduced a new concept of generalized $ \varphi $-concave-convex operator and proved the existence and uniqueness of fixed points of such operators with mixed monotonicity. As consequences, several new fixed point results about mixed monotone operators with some concavity and convexity were gained. In addition, the main results were applied to nonlinear integral equations on unbounded regions. The research findings generalized and developed recent relevant results in the literature.

    Citation: Shaoyuan Xu, Li Fan, Yan Han. Fixed points of generalized $ \varphi $-concave-convex operators with mixed monotonicity and applications[J]. AIMS Mathematics, 2024, 9(11): 32442-32462. doi: 10.3934/math.20241555

    Related Papers:

  • In this paper, we introduced a new concept of generalized $ \varphi $-concave-convex operator and proved the existence and uniqueness of fixed points of such operators with mixed monotonicity. As consequences, several new fixed point results about mixed monotone operators with some concavity and convexity were gained. In addition, the main results were applied to nonlinear integral equations on unbounded regions. The research findings generalized and developed recent relevant results in the literature.



    加载中


    [1] M. A. Krasnoselskii, Positive solutions of operator equations, P. Noordhoff, Groningen, The Netherlands, 1964. Available from: https://lccn.loc.gov/65002000.
    [2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620–709. https://doi.org/10.1137/1018114 doi: 10.1137/1018114
    [3] D. Cruo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, New York, 1988. https://doi.org/10.1016/0307-904X(90)90165-2
    [4] K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. https://doi.org/10.1007/978-3-662-00547-7
    [5] S. W. Du, V. Lakshmikantham, Monotone iterative technique for differential equations in a Banach space, J. Math. Anal. Appl., 87 (1982), 454–459. https://doi.org/10.1016/0022-247X(82)90134-2 doi: 10.1016/0022-247X(82)90134-2
    [6] A. Constantin, Monotone iterative technique for a nonlinear integral equation, J. Math. Anal. Appl., 205 (1997), 280–288. https://doi.org/10.1006/jmaa.1996.5175 doi: 10.1006/jmaa.1996.5175
    [7] V. Šeda, Monotone-iterative technique for decreasing mappings, Nonlinear Anal., 40 (2000), 577–588. https://doi.org/10.1016/S0362-546X(00)85035-X doi: 10.1016/S0362-546X(00)85035-X
    [8] E. Liz, Monotone iterative techniques in ordered Banach spaces, Nonlinear Anal., 30 (1997), 5179–5190. https://doi.org/10.1016/S0362-546X(96)00224-6 doi: 10.1016/S0362-546X(96)00224-6
    [9] M. W. Hirsch, Fixed points of monotone maps, J. Differential Equations, 123 (1995), 171–179. https://doi.org/10.1006/jdeq.1995.1161 doi: 10.1006/jdeq.1995.1161
    [10] M. A. Krasnoselskill, A. B. Lusnikov, Regular fixed points and stable invariant subsets of monotone operators, Funct. Anal. Appl., 30 (1996), 174–183. https://doi.org/10.1007/BF02509504 doi: 10.1007/BF02509504
    [11] M. W. Hirsch, H. Smith, Monotone maps: A review, J. Difference Equ. Appl., 11 (2005), 379–398. https://doi.org/10.1080/10236190412331335445 doi: 10.1080/10236190412331335445
    [12] E. C. Balreira, S. Elaydi, R. Luis, Global stability of higher dimensional monotone maps, J. Difference Equ. Appl., 2017. http://doi.org/10.1080/10236198.2017.1388375
    [13] H. Persson, A fixed point theorem for monotone functions, Appl. Math. Lett., 19 (2006), 1207–1209. https://doi.org/10.1016/j.aml.2006.01.008 doi: 10.1016/j.aml.2006.01.008
    [14] J. Duda, Cone monotone mappings: Continuity and differentiability, Nonlinear Anal., 68 (2008), 1963–1972. https://doi.org/10.1016/j.na.2007.01.023 doi: 10.1016/j.na.2007.01.023
    [15] D. Gao, A Fixed point theorem for monotone maps and its applications, J. Math., 2015 (2015), 167049. http://doi.org/10.115/2015/167049 doi: 10.115/2015/167049
    [16] M. Bachar, M. A. Khamsi, Recent contributions to fixed point theory of monotone mappings, J. Fixed Point Theory Appl., 19 (2017), 1953–1976. https://doi.org/10.1007/s11784-016-0339-3 doi: 10.1007/s11784-016-0339-3
    [17] M. R. Alfuraidan, E. D. Jorquera, M. A, Khamsi, Fixed point theorems for monotone Caristi inward mappings, Numer. Funct. Anal. Optim., 39 (2018), 1092–1101. https://doi.org/10.1080/01630563.2018.1478426 doi: 10.1080/01630563.2018.1478426
    [18] G. A. Enciso, Fixed points and convergence in monotone systems under positive or negative feedback, Inter. J. Control, 87 (2013), 301–311. https://doi.org/10.1080/00207179.2013.830336 doi: 10.1080/00207179.2013.830336
    [19] C. Mostajerran, R. Sepulchre, Positivity, monotonicity, and consensus on Lie groups, SIAM J. Control Ortim., 56 (2018), 2436–2461. https://doi.org/10.1137/17M1127168 doi: 10.1137/17M1127168
    [20] V. Doshi, S. Mallick, D. Y. Eun, Convergence of bi-virus epidemic models with non-linear rates on networks-a monotone dynamical systems approach, IEEE/ACM T. Network., 31 (2023). https://doi.org/10.1109/TNET.2022.3213015 doi: 10.1109/TNET.2022.3213015
    [21] K. Deimling, V. Lakshmikantham, Quasi-solutions and their role in the qualitative theory of differential equations, Nonlinear Anal.-Theor., 4 (1980), 457–663. https://doi.org/10.1016/0362-546X(80)90066-8 doi: 10.1016/0362-546X(80)90066-8
    [22] W. F. Ames, Monotonically convergent upper and lower bounds for classes of conflicting populations, In: Proceedings of the International Conference on Nonlinear Systems and Applications, Academic, New York, 1977, 3–14. https://doi.org/10.1016/B978-0-12-434150-0.50006-0
    [23] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal., 11 (1987), 623–632. https://doi.org/10.1016/0362-546X(87)90077-0 doi: 10.1016/0362-546X(87)90077-0
    [24] H. L. Smith, Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems, American Mathematical Society, Providence, R. I., 1995. https://doi.org/10.1090/surv/041
    [25] I. J. Cabrera, B. Lóspez, K. sadarangani, Existence of positive solutions for the nonlinear elastic beam equation via a mixed monotone operator, J. Comput. Appl. Math., 327 (2018), 306–313. https://doi.org/10.1016/j.cam.2017.04.031 doi: 10.1016/j.cam.2017.04.031
    [26] D. Angeli, E. D. Sontag, Monotone control systems, IEEE Trans. Autom. Control., 48 (2003), 1684–1698. https://doi.org/10.1109/TAC.2003.817920 doi: 10.1109/TAC.2003.817920
    [27] H. L. Smith, The discrete dynamics of monotonically decomposable maps, J. Math. Biol., 53 (2006), 747–758. https://doi.org/10.1007/s00285-006-0004-3 doi: 10.1007/s00285-006-0004-3
    [28] P. D. Leenheer, D. Angeli, E. D. Sontag, Monotone chemical reaction networks, J. Math. Chem., 2006. https://doi.org/10.1007/s10910-006-9075-z doi: 10.1007/s10910-006-9075-z
    [29] B. Chen, J. Wang, Global exponential periodicity and global exponential stability of a class of recurrent neural networks, Phys. Lett. A, 329 (2004), 36–48. https://doi.org/10.1016/j.physleta.2004.06.072 doi: 10.1016/j.physleta.2004.06.072
    [30] A. Wu, Z. Zeng, J. Zhang, Global exponential convergence of periodic neural networks with time-varying delays, Neurocomputing, 78 (2012), 149–154. https://doi.org/10.1016/j.neucom.2011.04.045 doi: 10.1016/j.neucom.2011.04.045
    [31] H. L. Simith, Global stability for mixed monotone systems, J. Difference Equ. Appl., 14 (2008), 1159–1164. https://doi.org/10.1080/10236190802332126 doi: 10.1080/10236190802332126
    [32] G. A. Enciso, H. L. Smith, E. D. Sontag, Nonmonotone systems decomposable into monotone systems with negative feedback, J. Differential Equations, 224 (2006), 205–227. https://doi.org/10.1016/j.jde.2005.05.007 doi: 10.1016/j.jde.2005.05.007
    [33] S. Chang, Y. Ma, Coupled fixed points for mixed monotone condensing operators and an existence theorem of the solutions for a class of functional equations arising in dynamic programming, J. Math. Anal, Appl., 160 (1991), 468–479. https://doi.org/10.1016/0022-247X(91)90319-U doi: 10.1016/0022-247X(91)90319-U
    [34] Y. Sun, A fixed point theorem for mixed monotone operators with applications, J. Math. Appl., 156 (1991), 240–252. https://doi.org/10.1016/0022-247X(91)90394-F doi: 10.1016/0022-247X(91)90394-F
    [35] Y. Sang, A class of $\varphi$-concave operators and applications, Fixed Point Theory Appl., 2013 (2013), 274. https://doi.org/10.1186/1687-1812-2013-274 doi: 10.1186/1687-1812-2013-274
    [36] D. Guo, Fixed points of mixed monotone operators with applications, Appl. Anal., 34 (1988), 215–224. https://doi.org/10.1080/00036818808839825 doi: 10.1080/00036818808839825
    [37] D. Guo, Existence and uniqueness of positive fixed points for mixed monotone operators and applications, Anal. Appl., 46 (1992), 91–100. https://doi.org/10.1080/00036819208840113 doi: 10.1080/00036819208840113
    [38] Z. Zhang, New fixed point theorems of mixed monotone operators and applications, J. Math. Anal. Appl., 204 (1996), 307–319. https://doi.org/10.1006/jmaa.1996.0439 doi: 10.1006/jmaa.1996.0439
    [39] Z. Liang, L. Zhang, S. Li, Fixed point theorems for a class of mixed monotone operators, J. Anal. Appl., 22 (2003), 529–542. https://doi.org/10.4171/ZAA/1160 doi: 10.4171/ZAA/1160
    [40] Y. Wu, Z. Liang, Existence and uniqueness of fixed points for mixed monotone operators with applications, Nonlinear Anal., 65 (2006), 1913–1924. https://doi.org/10.1016/j.na.2005.10.045 doi: 10.1016/j.na.2005.10.045
    [41] Y. Wu, New fixed point theorems and applications of mixed monotone operators, J. Math. Anal. Appl., 341 (2008), 883–893. https://doi.org/10.1016/j.jmaa.2007.10.063 doi: 10.1016/j.jmaa.2007.10.063
    [42] S. Xu, B. Jia, Fixed-point theorems of $\phi$-concave-(-$\psi$) convex mixed monotone operators and applications, J. Math. Anal. Appl., 295 (2004), 645–657. https://doi.org/10.1016/j.jmaa.2004.03.049 doi: 10.1016/j.jmaa.2004.03.049
    [43] C. Y. Huang, Fixed point theorems for a class of positive mixed monotone operators, Math. Nachr., 285 (2012), 659–669. https://doi.org/10.1002/mana.200910277 doi: 10.1002/mana.200910277
    [44] D. Wardowski, Mixed monotone operators and their application to integral equations, J. Fixed Point Theory Appl., 19 (2017), 1103–1117. https://doi.org/10.1007/s11784-016-0335-7 doi: 10.1007/s11784-016-0335-7
    [45] X. Pan, Eigenvectors of nonmonotone operators and an iterative method, Math. Numer. Sin., 2 (1988), 129–137.
    [46] Z. Zhao, X. Du, Fixed points of generalized $e$-concave (generalized $e$-convex) operators and their applications, J. Math. Anal. Appl., 334 (2007), 1426–1438. https://doi.org/10.1016/j.jmaa.2006.09.082 doi: 10.1016/j.jmaa.2006.09.082
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(183) PDF downloads(33) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog