Research article Special Issues

Positive solutions for a critical quasilinear Schrödinger equation

  • Received: 09 March 2023 Revised: 31 May 2023 Accepted: 06 June 2023 Published: 09 June 2023
  • MSC : 35J20, 35J70, 35P05, 35P30, 34B15, 58E05, 47H04

  • In our current work we investigate the following critical quasilinear Schrödinger equation

    $ -\Delta \Theta+\mathcal V(x)\Theta-\Delta (\Theta^2)\Theta = |\Theta|^{22^*-2}\Theta+\lambda \mathcal K(x)g(\Theta), \ x \ \in \mathbb R^N, $

    where $ N\geq 3 $, $ \lambda > 0 $, $ \mathcal V, \ \mathcal K\in C(\mathbb R^N, \mathbb R^+) $ and $ g\in C(\mathbb R, \mathbb R) $ has a quasicritical growth condition. We use the dual approach and the mountain pass theorem to show that the considered problem has a positive solution when $ \lambda $ is a large parameter.

    Citation: Liang Xue, Jiafa Xu, Donal O'Regan. Positive solutions for a critical quasilinear Schrödinger equation[J]. AIMS Mathematics, 2023, 8(8): 19566-19581. doi: 10.3934/math.2023998

    Related Papers:

  • In our current work we investigate the following critical quasilinear Schrödinger equation

    $ -\Delta \Theta+\mathcal V(x)\Theta-\Delta (\Theta^2)\Theta = |\Theta|^{22^*-2}\Theta+\lambda \mathcal K(x)g(\Theta), \ x \ \in \mathbb R^N, $

    where $ N\geq 3 $, $ \lambda > 0 $, $ \mathcal V, \ \mathcal K\in C(\mathbb R^N, \mathbb R^+) $ and $ g\in C(\mathbb R, \mathbb R) $ has a quasicritical growth condition. We use the dual approach and the mountain pass theorem to show that the considered problem has a positive solution when $ \lambda $ is a large parameter.



    加载中


    [1] A. D. Bouard, N. Hayashi, J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189 (1997), 73–105. https://doi.org/10.1007/s002200050191 doi: 10.1007/s002200050191
    [2] X. L. Chen, R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993), 2082–2085. https://doi.org/10.1103/PhysRevLett.70.2082 doi: 10.1103/PhysRevLett.70.2082
    [3] H. Lange, M. Poppenberg, H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations, Commun. Part. Diff. Eq., 24 (1999), 1399–1418. https://doi.org/10.1080/03605309908821469 doi: 10.1080/03605309908821469
    [4] M. Poppenberg, K. Schmitt, Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Dif., 14 (2002), 329–344. https://doi.org/10.1007/s005260100105 doi: 10.1007/s005260100105
    [5] J. Chen, X. Huang, B. Cheng, X. Tang, Existence and concentration behavior of ground state solutions for a class of generalized quasilinear Schrödinger equations in $\mathbb R^N$, Acta Math. Sci., 40B (2020), 1495–1524. https://doi.org/10.1007/s10473-020-0519-5 doi: 10.1007/s10473-020-0519-5
    [6] X. Zhang, L. Liu, Y. Wu, Y. Cui, Existence of infinitely solutions for a modified nonlinear Schrödinger equation via dual approach, Electron. J. Differ. Equ., 147 (2018), 1–15.
    [7] S. Chen, X. Wu, Existence of positive solutions for a class of quasilinear Schrödinger equations of Choquard type, J. Math. Anal. Appl., 475 (2019), 1754–1777. https://doi.org/10.1016/j.jmaa.2019.03.051 doi: 10.1016/j.jmaa.2019.03.051
    [8] W. Zhu, C. Chen, Ground state sign-changing solutions for a class of quasilinear Schrödinger equations, Open Math., 19 (2021), 1746–1754. https://doi.org/10.1515/math-2021-0134 doi: 10.1515/math-2021-0134
    [9] K. Tu, Y. Cheng, On a class of quasilinear Schrödinger equations with the supercritical growth, J. Math. Phys., 62 (2021), 121508. https://doi.org/10.1063/5.0072312 doi: 10.1063/5.0072312
    [10] Y. Xue, L. Yu, J. Han, Existence of ground state solutions for generalized quasilinear Schrödinger equations with asymptotically periodic potential, Qual. Theor. Dyn. Syst., 21 (2022), 67. https://doi.org/10.1007/s12346-022-00590-1 doi: 10.1007/s12346-022-00590-1
    [11] Y. Wei, C. Chen, H. Yang, Z. Xiu, Existence and nonexistence of entire large solutions to a class of generalized quasilinear Schrödinger equations, Appl. Math. Lett., 133 (2002), 108296. https://doi.org/10.1016/j.aml.2022.108296 doi: 10.1016/j.aml.2022.108296
    [12] S. Zhang, Positive ground state solutions for asymptotically periodic generalized quasilinear Schrödinger equations, AIMS Math., 7 (2021), 1015–1034. https://doi.org/10.3934/math.2022061 doi: 10.3934/math.2022061
    [13] Q. Jin, Standing wave solutions for a generalized quasilinear Schrödinger equation with indefinite potential, Appl. Anal., 2022. https://doi.org/10.1080/00036811.2022.2107907
    [14] W. Wang, Y. Zhang, Positive solutions for a relativistic nonlinear Schrödinger equation with critical exponent and Hardy potential, Complex Var. Elliptic, 67 (2022), 2924–2943. https://doi.org/10.1080/17476933.2021.1958798 doi: 10.1080/17476933.2021.1958798
    [15] J. Zhang, Multiple solutions for a quasilinear Schrödinger-Poisson system, Bound. Value Probl., 2021 (2021), 78. https://doi.org/10.1186/s13661-021-01553-2 doi: 10.1186/s13661-021-01553-2
    [16] A. Ambrosetti, V. Felli, A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. (JEMS), 7 (2005), 117–144. https://doi.org/10.4171/JEMS/24 doi: 10.4171/JEMS/24
    [17] B. Opic, A. Kufner, Hardy-type inequalities, Pitman research notes in mathematics series, Longman Scientific & Technical, Harlow, 1990.
    [18] A. Ambrosetti, Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differ. Integral Equ., 18 (2005), 1321–1332.
    [19] D. Bonheure, J. Van Schaftingen, Ground states for nonlinear Schrödinger equation with potential vanishing at infinity, Ann. Mat. Pur. Appl., 189 (2010), 273–301. Available from: https://link.springer.com/article/10.1007/s10231-009-0109-6.
    [20] M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213–226. https://doi.org/10.1016/j.na.2003.09.008
    [21] J. Liu, Y. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, II, J. Differ. Equ., 187 (2003), 473–493. https://doi.org/10.1016/S0022-0396(02)00064-5 doi: 10.1016/S0022-0396(02)00064-5
    [22] J. M. Bezerra do Ó, O. H. Miyagaki, S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differ. Equ., 248 (2010), 722–744. https://doi.org/10.1016/j.jde.2009.11.030 doi: 10.1016/j.jde.2009.11.030
    [23] X. He, A. Qian, W. Zou, Existence and concentration of positive solutions for quasilinear Schrödinger equations with critical growth, Nonlinearity, 26 (2013), 3137–3168. https://doi.org/10.1088/0951-7715/26/12/3137 doi: 10.1088/0951-7715/26/12/3137
    [24] E. Gloss, Existence and concentration of positive solutions for a quasilinear equation in $\mathbb{R}^N$, J. Math. Anal. Appl., 371 (2010), 465–484. https://doi.org/10.1016/j.jmaa.2010.05.033 doi: 10.1016/j.jmaa.2010.05.033
    [25] C. O. Alves, M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differ. Equ., 254 (2013), 1977–1991. https://doi.org/10.1016/j.jde.2012.11.013 doi: 10.1016/j.jde.2012.11.013
    [26] Q. Li, K. Teng, X. Wu, Existence of positive solutions for a class of critical fractional Schrödinger equations with potential vanishing at infinity, Mediterr. J. Math., 14 (2017), 80. https://doi.org/10.1007/s00009-017-0846-5 doi: 10.1007/s00009-017-0846-5
    [27] H. Berestycki, P. L. Lions, Nonlinear scalar field equations, I existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313–346. Available from: https://link.springer.com/article/10.1007/BF00250555.
    [28] E. A. B. Silva, G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with subcritical growth, Nonlinear Anal., 72 (2010), 2935–2949. https://doi.org/10.1016/j.na.2009.11.037 doi: 10.1016/j.na.2009.11.037
    [29] E. A. B. Silva, G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Part. Dif., 39 (2010), 1–33. https://doi.org/10.1007/s00526-009-0299-1 doi: 10.1007/s00526-009-0299-1
    [30] X. Liu, J. Liu, Z. Q. Wang, Ground states for quasilinear Schrödinger equations with critical growth, Calc. Var. Part. Dif., 46 (2013), 641–669. https://doi.org/10.1007/s00526-012-0497-0 doi: 10.1007/s00526-012-0497-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1056) PDF downloads(61) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog