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Abstract: In our current work we investigate the following critical quasilinear Schrodinger equation
—A® + V(x)0 — A®*)0 = |01 20 + 1K (x)g(®), x € R",

where N >3, 1> 0,7V, K € CRY,R") and g € C(R,R) has a quasicritical growth condition. We use
the dual approach and the mountain pass theorem to show that the considered problem has a positive
solution when A is a large parameter.
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1. Introduction

In this work we discuss the critical quasilinear Schrodinger equation
—AB + V(x)O — A(GHO = |0] 20 + 1K (x)g(®), x € R", (1.1)

where N > 3, V,K € CR",R"), g € C(R,R) is a quasilinear growth function, 2* = 2N/(N — 2)
and 22" is the critical exponent for (1.1).

Quasilinear equations are often involved in studying standing wave solutions for the quasilinear
Schrodinger equation

iy = —ay + WO — kalp(y)e’ (P — L, (1.2)

where ‘W is a potential, k € R, p, [ : R — R. The form of (1.2) has many applications in physics, for
example see [1-4]. In [5] the authors used the method of Nehari manifold to discuss the concentration
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behavior and the exponential decay phenomenon of ground state solutions for the equation
~div (%200 V) + €800 IV + Vi = K"y x € R,

where N € [3,00), & € (0,00), p € (4,22"), g € C' (R,R*),V, K € C(RY)n L (R"). In [6] the authors
studied the equation

“Ay + V() - [A (1+x)" 2] — ¥ _fy, inRY,
2(1+x%) %
and obtained that the above problem has infinitely many high energy solutions, where 1 < @ < 2, ]76
C (RN X R, R). For some related papers we refer the reader to [7—15] and the references cited therein.
Because of the quasilinear term A(®%)®, we note that the quasilinear case is much more complicated
than the semilinear case. Moreover, the main difficulty of (1.1) is there is no suitable space on which
the energy functional is well-defined and of the C!-class except for N = 1 (see [4]). Also an important
problem of (1.1) is the zero mass case, which appears when V vanishes at infinity, i.e.,

Ve = |l‘im V(x)=0.
In [16], when (1.1) has no critical term and a quasilinear term, the authors studied the zero mass case
with
g)=s"1<p<2" -1

and V, K satisfy the assumption:
(VK) V,K € C'(R",R), and there exist 7,&,a; > 0(i = 1,2, 3) such that

ap 3 N
<Vx)<ar, 0<K(x) < ——, xeR",
Trpy = YW =a < T

where 7, & satisfy

N-2 T(N-2)

M2 _ ¥ _ocp 0<é<T,
p>1, E>T.

In [17], using (VK) the authors established the following result: E is compactly embedded into the
Lebesgue space

LY (RY) = {@ :RY - R : ® is measurable and [RN K(x)|O®Pdx < +oo},
where 1 < p <2* -1 and
E :={® e D"*([RY): fR ) V(x)@*dx < +0},
and the norm on E is defined as follows:

ell7 = f (IVOP + V(x)®?)dx.
RN
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In [18] the authors also considered the condition (VK), when the inequality of “V is only imposed
outside of a ball centered at origin. In [19] the authors introduced some new hypotheses for K, using the
Marcinkiewicz spaces L"*(R")(r > 1), which ensures that the embedding E < L% (R") is continuous
and compact for ¢ > 1. The space L**(R") is formed by measurable functions 4 : RY — R verifying

1
IAll;0 := sup flhldx < +00.
D

peed |D|\7F

We will consider the subspace L;™(RY) of L"*(R"), which is the closure of L*(RY) n L'(RY) in
L"*(RM). In that paper, it was proved that the embedding

E — LFR"Y)

is continuous for p € [2,2*]if K € L' RN). If K € LS“’(RN ), the above embedding is compact for all
p € [2,29.

In order to study our problem, we first give some assumptions:

We say that (V, K) € K if the following conditions are satisfied:

(KI) K € L*RN), V(x), K(x) > 0,x € RV,

(KII) There is a sequence of Borel sets {A,} C R" such that |A,| < R for some R > 0, n € N and we
have

lim K(x)dx = 0 uniformly for n € N. (Ky)

ro+eo J4 ABe(0)

(KIIT) One of the following two conditions occurs:

K
— e L°R" K
Y, (R™) (K2)
or there exists a p € (2,22") such that
K
—— — 0as |x] - +oo. (K3)
(Vﬁ

Moreover, for the function g, we assume that:
lim 2 =0 if (K,) holds,

-0 !
@D\ i B0 < Lo if (K3) holds.

lim

t—0 [

(g2) lim &2 = 0.
lfl—-+oo 11
(g3) tg(t) —4G(t) >0, t € R.
(g4) gt >0,1+0.
Now we give the main theorem:
Theorem 1.1. Let (V,K) € K and suppose (g;) — (g4) are true. Then (1.1) has a positive solution for
large A.

In our paper, C and C; are utilized in various places to denote different positive constants.

AIMS Mathematics Volume 8, Issue 8, 19566—-19581.



19569

2. Preliminaries

The energy functional of (1.1) is defined as
1 2 2 1 2 1 22
Ji©®) == | (1+20°)|VO|-dx+ - V(x)O'dx — — O dx -1 K(x)G(®)dx,
2 RN 2 RN 22* RN RN

where G(®) := f0® g(s)ds. Since J,(0) is not well-defined on E, we cannot adopt directly the
variational method to study (1.1). Motivated by [20,21], let ® = .#(¥"), where .¥ is defined by

(1) = ; t € [0, +0)

V1 +2.72(1)

and
SL(—t) = =L(1), t € (—0,0].

By variable transform, we obtain the modified energy functional

1
22+

LY = (L (V) :% f |V”//|2dx+% f V).V )dx - f |.Z (V)P dx
RN RN RN

- A f Kx)G(Z(V))dx.
RN
We easily obtain I; € C'(E,R), and its Gateaux derivative is given by

(L), @) = f VY -Vedx + f V(@)L () (¥ pdx — f .S (P2 2L (S (V )pdx

RN R R

-1 [ K0S ) P g

forall 7,p € E.
For completeness we provide some properties for ..
Lemma 2.1. (see [22-24]) . (¢) has the following properties:
() < is of class C*, and invertible;
()0< (<1, teR;
()OI < i, t€R;
() limy o 52 = 1;
(F5) im0 220 = V2, Timy,oo 20 = —V2;
(S DL <t ()< L), V120, L)<t ()< 2L, 1<0;
() S2@0) < V2, 1 € R;
(F) L2(1) is strictly convex;
(%) There exists § > 0 such that

O, 1 <1,

L0 Z{ o, 1> 1;
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(<o) There exist Cy, C, > 0 such that
1l < CIl.L @]+ ColL O, t € R;

(SN OF" O < 35, tER;
(Fn) Z(t) is odd, .7*(t) is even;
(S13) Y€ > 0, there exists C(£) > 0 such that

FHEN < CES* (1), teR;

(A1) L)"')t is strictly decreasing for ¢ > 0;

(S5) L4(1)." (! is strictly increasing for g > 3, t > 0;

(L) LAt < 2.7%(1),A> 1,t €R;

(A7) L2(G0) < 2720, 1> 1,1 e R

From Lemma 2.1, Proposition 2.1 in [25] or Lemma 2.2 in [26] we can obtain the result:
Lemma 2.2. Let (V,K) € K and (K>) or (K3) be satisfied. Then 7, — 7 in E implies that

f KL ()ldx — f KL (P )dx,2 < g < 22°.
RN RV

From Lemmas 2.1 and 2.2, Lemma 2.2 in [25] we get the result:
Lemma 2.3. Let (V,K) € Kand (g;) — (g») hold. If #, — ¥ in E, then we have

n—oo

lim KX)G(Z (V))dx = f Kx)G(L(V))dx,
RN RN

lim | KL (V)L (dx = | Kx)g(F (V) (V)dx
RN

n—oo RN
and

lim [ KOS N = [ Kog( s (0 (V.
n—o0 JrRN RN
Proof. (1) If (K;) holds, then Lemma 2.2 implies that

lim f KL (Pp)ldx = f K| ()Ndx, 2 < g < 22".
RV RV

n—oo

Therefore, for all & > 0, there exists » > 0 such that f K(x)|.L(¥)4dx < € for large n. Moreover,

(g1) and (g,) imply that

7(0)

K (x)G(s)| < eC[V(x)s* + |5 ]+ CK(x)|sl, s €R.

Hence, from (.#3) and (.%7) we have

Kx)G(L (V)dx < Ce 2.1

B(0)

for large n. By the compactness lemma of Strauss (see [27]) we have

lim KX)G(Z (V))dx = Kx)G( (¥ ))dx. (2.2)

7 JB(0) B,(0)
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Consequently, from (2.1) and (2.2) we obtain

lim Kx)G(Z (V))dx = f Kx)G(L(V))dx.
RN RN

n—oo

(i1) If (K3) holds, then for any £ > 0, there exists a sufficient large r such that
K(x) < e[ VISP + s 7], seR, |x >
Hence, we have
K@IG(s) < el VIGS)IIsP* +IGONIs 7], s €R, |xl 2. (2.3)
Combining (2.3) with (g;) and (g»), there exist 0 < sy < s; such that
K)IG(s)| < eC[V(x)s> + |51, s€ 1, x| > 7,
where I :={s € R : |s| < 59 or |s| > s;}. Consequently, we obtain
K@IG(s)| < eCIV(x)s* + [s T+ CK 5Dy s €R, [x] > 7. (2.4)

Moreover, there exists a M; > 0 such that

7l < M, and f [% > dx < My, n€N.

RN

Let
A, = {x eRY 1 50 < 70| < s51).

Then s%'4,| < fA |7,> dx < M;, n € N. This implies that sup |A,| < +co. Thus (K;) implies that
" neN

f K(x)dx <&, neN,
AnNBE(0)
because r is big enough. Hence, (.3), (.#7) and (2.4) imply that

KOG (¥)dx < eC f (V)Y + 4, 1dx + C f K(x)dx < Ce.
RN A,NBS(0)

B(0)

Similarly, by the compactness lemma of Strauss we have

lim Kx)G( (V))dx = Kx)G(L(V))dx.

7 JB(0) B,(0)

Consequently,

n—oo

lim Kx)G(L(V))dx = f Kx)G(L(V))dx.
RV RV

Similarly, we get

lim f KOS ). (Fo)dx = f KW F VNS )dx
—00 JpN RN

n
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and

n—oo

lim f KD S F).S V) = f K()g(L )5V )dx.
RN RN

The proof is completed. O

Lemma 2.4. ([28,29]) Let X be a real Banach space and I € C!'(X,R). Let X be a closed subset of X
which disconnects (arcwise) X into distinct connected components X; and X;,. Suppose that 71(0) = 0
and

(1;) 0 € X;, and there exists @ > 0 such that I|s > a > 0.
(1) there exists a e € X, such that I(e) < 0.

Then I possesses a Cerami sequence with ¢ > a > 0 given by

= inf 1(y(1)),
c lfér 2}3?‘] (y(®))

where
I'={yeC(0,1],X): y(0) =0and I(y(1)) < 0}.

Now, we prove that 7, has the mountain pass geometry.
Lemma 2.5. Suppose that (V, K) € K and g satisfies (g1), (g2) and (g4). Then I, satisfies the conditions
in Lemma 2.4 (I;) and (1,).
Proof. Forany p > 0,let S, = {¥ € E : Q(¥) = p*}, where Q : E — R is given by

QYY) = f VY] + V(x).S*(¥)]dx.
RN

Since Q() is continuous on E, S, is a closed subset of E and it disconnects E into distinct connected
components E; and E,.
If either (K3) or (K3) hold, (g;) and (g,) imply that for any € > 0, there exists C, > 0 such that
l8()I < els| + Cel s>

for all s € R. Hence, by an inequality (see [30, (4.5)]) we have
A fR KOG (V)dx < A fR ) Kx)[eS* (V) + Col.Z () 1dx
< AeCy N 2V )dx + ACC, N .7 (W) dx
< 1eC, fR N[lVY(”//)F + V(x).7*(¥)]ldx + ACC, fR ) .7 (V)P dx
< AsC, fR N[|V7/|2 + V(x).7*(¥)]dx + ACC, fR ) L. (W) dx.

Moreover, by (.#7) we have

f LS ()2 dx < 27 f V¥ dx < C[ f V¥ Pdx)T < Cp* VY €S,
RN RN N

R
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Consequently, for 7 € S, we obtain

—ACCp* ==a>0

1=
i
)

1 *
L(YV) > Ep2 — 1sCp* = ACCp* >

for p > 0 and & > 0 small enough.

In what follows, we take a function ¢ € Cy(R") with suppy = B; and ¢ € [0, 1], x € B;. For any
t > 0, since 24 () is decreasing about t > 0, we get .7 (f)¢(x) < . (tp(x)), for x € By and t > 0. Hence
by (#3), (Ys) and (g4) we have

L(te) =%t2 f |Vgp|2dx+% f (V(x)YZ(tgp)dx—% f .7 (o) dx — A f K(x)G(.L (to))dx
N RN

Lp f (Ve + V(e ldx - L (1) dx
B

2 2%
e f Vel + VRl - oo [ 77 @l d
RN B
1 1.2 *
= |- f (IVel* + V(x)pH)dx — — f ol dX]
[2 - 2R )y
— — 0

ast — +oo, i.e., [(tp) —» —oco as t — +oo. Consequently, let e := t*¢ be such that I,(e) < O(¢* large
enough). The proof is completed. O

Lemma 2.6. Let (V, K) € K and (g;) — (g3) hold. Then there is a bounded Cerami sequence {#,} C E
with I,(7,) = ¢, > a > 0, where

Cai= lyrelf S[lél?] Li(y(0),T :={y € C([0,1], E) : y(0) = 0 and I;(y(1)) < 0},

and « is found in Lemma 2.5.
Proof. Step 1: We prove that the sequence {Q(7,)} is bounded. Let ¢, = 7 (7/) . Then ||,z < 2117|E.
Consequently, we get

S (V)
EZTAL
2.7%(,)
RN[E - Z( 1 +2.7%(Y,)
1

1
e+ 0,(1) =I(¥) - _<I/,1(7/n)

)]|V”//n|2dx+}l f V.S (Y )dx
RN

. 1
fdo L f SO dx+ 2 [ K ) ) = G Fod
RN
- SO Pdxs ! f V.S dx
4 4 RN
| * 1
(Z ) f LS dx + 4 f K78 V) (V) = G (Fp)ldx.
RN

Hence, from (g3) we have {||.(#,)||g} and {||-7(#,)|l.-} are bounded, and

0< ﬂf W(X)[%g(y(”//n))y(”//n) -G ())ldx < C.
RN
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Note that (g;) and (g,) imply that
IG(1)| < C(* + 1), teR.

Therefore, we have

1
22x

1 *
cat+o,(1) = L(Yy) = EQ(%’) — =R - /lf K(x)G(S (F,)dx
RN

and thus {Q(¥,)} is bounded. *
Step 2: We verify that there exists C > 0 such that Q(¥;) + QYT > ClI%,|2. In view of (.%5),
the Sobolev embedding theorem implies that

Voyszar <~ [ Vs 0dr < e
<1 0 <1 6

and

(wwﬁM4cj‘|%Fmsc@wm?

[7al>1 [#1>1

Hence, we obtain

f VP 2dx < Q) + CIRUTE.
RN

Consequently,
1 >
73l < QU7 + Q) + ClA)IE,

ie. CIIE < Q) +[QUIZ.

Combining with the two steps we have {||%;||¢} is bounded. The proof is completed. O
Lemma 2.7. Let (V,K) € K and (g,), (g2), (g4) hold. Then there exists 4* > 0 such that 0 < ¢, < ﬁSg
forall 4 > A",

Proof. Suppose the contrary. Then there exists a sequence {4,} with 4, — +oco such that ¢,, > %VS 7,

Choosing 7" € E\ {0}, then from (g;), (g>) and (g4) there exists a unique #,, > 0 such that m%x L,@Y) =
[ 24
1, (t,,7). From (.*3) and (.-%) we have

IR > f L IV 2 (1 IS 10,V Yo,V i+ A f K@D (1, VNS (1, ),V dx
RN R

N

> | LIPS, )T (1, V),V dx.

RN
From (.5) and (%) we have {z, } is bounded. Hence, there exists 7, > 0 such thatz, — #; asn — co.
If #p > 0, then by (g4) and Fatou’s Lemma we have

lim[ |ymﬂw”4ymﬂm¢mﬂwymu+@fnmmgymﬂmy%%%mﬂwﬂ:+m
RN RN

n—oo
(2.5
However we note that

L?Q%7WT4§%%¢)71%¢0%¢ﬂx+Aﬂ[‘K@k@?QVV»?%%¢O%¢ﬂx
RN RN
< IIVE = gl Yz

AIMS Mathematics Volume 8, Issue 8, 19566—-19581.



19575

and this contradicts (2.5). Hence t, = 0. Let #" =t,, 7. Then we have

L,W)=1,,t,7) = max L,aW).
Consequently, by (.#3) and (g4) we have
max L, (t4) = L, (1, V) < %tin”f/né -0
as n — oo. Hence

1w
0<—S2< < inf supl, ¢¥) <supl, ¢#) — 0,
N Ca, yem) tZ(I)) 2,(Y) ;z(? LX)

and this is a contradiction. Therefore, we have our conclusion in this lemma. The proof is completed.
O

3. Proof of Theorem 1.1

Lemma 2.7 indicates that there is a A* > 0 such that 0 < ¢; < ﬁS % for all A > A*. For a fixed

A > A*, by Lemma 2.6 there exists a bounded Cerami sequence {¥,} C E with I,(?,) = ¢; > a > 0,
where
cy:=inf sup Li(y(®),I" :={y € C([0,1],E) : y(0) =0 and I,(y(1)) <0},

Y€l te10,1]

and « is found in Lemma 2.5. Hence, there is a ¥ € E such that

¥, — ¥ in E,
¥, — ¥ in L] (RV) for 2 <s< 2%, (3.1)
Y,(x) = ¥(x)ae. on RV,

By a standard argument we obtain /(7)) = 0, i.e., 7" is a weak solution of (1.1). Indeed, for any
¥ € Cy(RY), we have

on(1) =TV )
- f VY, Vydx + f VS IS oy — f LS A2 V). oy
RN RN RN

-4 " Kx)g(Z (V)" (V).

From (3.1) we have

fV%-Vt//dx—)f VYV - Vidx,
RN RN
f V@)L V) (Fpdx — f V(). (V). (V Wdx,
RN RN
f |.L (P2 S ) (Pdx — f L2 ). (Y Wdx
RN RN
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19576

and

f K@) (1) (Fpdx — f Kx)g( (V)" (V Wdx.
RV RV
Consequently, we obtain
0= f VY - Vidx + f V@)L ()" (¥ Wdx - f .S (NN 2L (V). (Y Wrdx
RV RV RV

— A | KDL NS (P Wpdx, Vi € C3(R™),

RN

For any ¢ € E, there exists a sequence {¢,,} C C(‘;"(RN ) such that ¥, — ¢ in E. Hence

0= f VY - Vindx + f V(X)L (V)T (Y Windx — f .S (P2 2L )S (Y Wrudx
RN RN RN

=4 | KL (V)NS" (Y Wndx.
RN
Let n — oo and we get

0= f VY - Vodx + f VX)L (V)L (V )pdx — f .S (P22 (V )pdx
RN RN RN

-4 | K@) (V)" (¥ )pdx,

RN

ie., (I(?),¢) = 0forall ¢ € E. Hence I'(7) = 0. Now, let " := max{?",0} and ¥~ := min{7’, 0}.
Then we replace I, with the functional

(V)= % f |V”I/|2dx+% f fV(x)%(”//)dx—% f L. (VD dx - A f Kx)G(S(V*))dx.
RN RN RV RV

Consequently, we obtain that 7 is a solution for the equation
AV = V@S D) D)+ 1L IS ) = K@ VS (I, xRV,

Let ¥~ be a test function, and we get

0< VY |Pdx = — f VX)L (W)L (V)Y dx < 0.
RN

RN

Consequently, fRN V)L V) (V)Y dx =0,ie., ¥ >0. By Lemma 2.3 we find

lim f KOS V)7 (Fo)dx = f KW V)L )dx
n—oo Jpn RN

and

n—oo

lim f Kx)G(L(Vy))dx = f KX)G(L(V))dx.
RV RV
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(M)

ZallE < 2||7,]|le we obtain

From ||

ci+ 0,(1) =L(7})

1 2«72(%) 2 1 2

f |5ﬂ(“//)|22 dx -2 f K(x)G(L(¥))dx

S22

and

(Y,
on(1) =(T(F3), y,((/)>

3 2.2 5 )
_fRN [HW”Z(%)]W%' dx+fRNfV(x)y (¥,)dx (3.2)

_ f LI dx = A f KD IS F)dx.
RN RN

Let

A(H,) = fR ) [HW”Z(%)]N%' dx + fR V.S dx.

Then ¢, > 0 implies that A(7,) has a positive lower bound. Otherwise, A(?,) — 0(n — o), and we
have

crto,(1)=0L(7) = %f IV, Pdx + ; f V(x).S*(Vp)dx — %f |7 (#)P dx
RN
-2 f KX)G(S(V,))dx
2.7%(Y) 5 1 )
f [1 + W |V”I/| dx + Ef V(x).L2(¥,)dx
%A(”//)—>Oasn—>oo

1
2

This contradicts ¢, > 0. Therefore, we have

on(1)
AT Y
If ¥ =0, then
_ , ()
cato,(1) = (%) - 37+ (14(7/) Sz (7/)>
1 1 2.7%(Y,) 2 2
> (Z - 22*)fRN |+ T2y Vil + Vs () |dx

AIMS Mathematics Volume 8, Issue 8, 19566—-19581.
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Moreover, Lemma 2.7 and (3.2) imply that

2
f [1+M]|V7/,,|2dx+ f V(x).S2(V;)dx
RN RN

1 +2.92(%,)
V2P dx
RN
>S { f |y(7/n)|22"dx}2*
=S { B 2 7/))|V”//,,|2 + V@)V |dx + 0,,(1)}
25/2(7/) *
=S { B X 7/))|V”V,,|2 + (V(x)yz("f/n)]dx} +0,(1).

From c; > 0 we have

2
-3

2
{ f |+ 27700 ygyp (V(x)yz(%,)]dx} > S +o,(1),
RN

1 +2.92(%,)
i.e., ,
27 (%) 2 2 g _ %
fRN [(1 + T2 27209 25”2("//,1))|V7/”| +V(x). (”//n)]dx >[S +0,(1)]7 =852 +0,(1).
Consequently,

1 1 ' 25/2(%) 2 2 I .~
(4 22*)3&0‘[@ [(1 +W)IV%I + V(xS (”i/n)]dxz S

and this has a contradiction. Hence, ¥* # 0, and by the maximum principle we have #" > 0. The proof
is completed. O

4. Conclusions

In this paper we use the dual approach and the mountain pass theorem to investigate the existence of
positive solutions for the critical quasilinear Schrodinger equation (1.1) considering suitable conditions
about nonlinearity g and the potential V. It is interesting to notice that our work gives some weaker
conditions than those in the cited works, and generalizes the corresponding ones in the literature.
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