We will focus on the existence of nontrivial, nonnegative solutions to the following quasilinear Schrödinger equation
$ \begin{equation*} \left\lbrace\begin{array}{rcll} -{\rm div} \Big(\log \dfrac{e}{|x|}\nabla u\Big) -{\rm div} \Big(\log \dfrac{e}{|x|}\nabla (u^2)\Big) u \ & = &\ g(x, u), &\ x \in B_1, \\ u \ & = &\ 0, &\ x \in \partial B_1, \end{array}\right. \end{equation*} $
where $ B_1 $ denotes the unit ball centered at the origin in $ \mathbb{R}^2 $ and $ g $ behaves like $ {\rm exp}(e^{s^4}) $ as $ s $ tends to infinity, the growth of the nonlinearity is motivated by a Trudinder-Moser inequality version, which admits double exponential growth. The proof involves a change of variable (a dual approach) combined with the mountain pass theorem.
Citation: Yony Raúl Santaria Leuyacc. Standing waves for quasilinear Schrödinger equations involving double exponential growth[J]. AIMS Mathematics, 2023, 8(1): 1682-1695. doi: 10.3934/math.2023086
We will focus on the existence of nontrivial, nonnegative solutions to the following quasilinear Schrödinger equation
$ \begin{equation*} \left\lbrace\begin{array}{rcll} -{\rm div} \Big(\log \dfrac{e}{|x|}\nabla u\Big) -{\rm div} \Big(\log \dfrac{e}{|x|}\nabla (u^2)\Big) u \ & = &\ g(x, u), &\ x \in B_1, \\ u \ & = &\ 0, &\ x \in \partial B_1, \end{array}\right. \end{equation*} $
where $ B_1 $ denotes the unit ball centered at the origin in $ \mathbb{R}^2 $ and $ g $ behaves like $ {\rm exp}(e^{s^4}) $ as $ s $ tends to infinity, the growth of the nonlinearity is motivated by a Trudinder-Moser inequality version, which admits double exponential growth. The proof involves a change of variable (a dual approach) combined with the mountain pass theorem.
[1] | F. Bass, N. Nasanov, Nonlinear electromagnetic spin waves, Phys. Rep., 189 (1990), 165–223. https://doi.org/10.1016/0370-1573(90)90093-H doi: 10.1016/0370-1573(90)90093-H |
[2] | A. de Bouard, N. Hayashi, J. G. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189 (1997), 73–105. https://doi.org/10.1007/s002200050191 doi: 10.1007/s002200050191 |
[3] | D. B. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $ \mathbb{R}^2$, Commun. Partial Differ. Equ., 1 (1992), 407–435. https://doi.org/10.1080/03605309208820848 doi: 10.1080/03605309208820848 |
[4] | M. Calanchi, B. Ruf, On a Trudinger–Moser type inequality with logarithmic weights, J. Differ. Equ., 258 (2015), 1967–1989. https://doi.org/10.1016/j.jde.2014.11.019 doi: 10.1016/j.jde.2014.11.019 |
[5] | D. Cassani, C. Tarsi, A Moser-type inequalities in Lorentz-Sobolev spaces for unbounded domains in $ \mathbb{R}^N$, Asymptot. Anal., 64 (2009), 29–51. https://doi.org/10.3233/ASY-2009-0934 doi: 10.3233/ASY-2009-0934 |
[6] | X. Chen, R. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993), 2082–2085. https://doi.org/10.1103/PhysRevLett.70.2082 doi: 10.1103/PhysRevLett.70.2082 |
[7] | M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213–226. https://doi.org/10.1016/j.na.2003.09.008 doi: 10.1016/j.na.2003.09.008 |
[8] | X. Q. Liu, J. Q. Liu, Z. Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differ. Equ., 254 (2013), 102–124. https://doi.org/10.1016/j.jde.2012.09.006 doi: 10.1016/j.jde.2012.09.006 |
[9] | X. Liu, J. Liu, Z. Wang, Quasilinear elliptic equations via perturbation method, Proc. Am. Math. Soc., 141 (2013), 253–263. http://doi.org/10.1090/S0002-9939-2012-11293-6 doi: 10.1090/S0002-9939-2012-11293-6 |
[10] | J. Liu, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅰ, Proc. Am. Math. Soc., 131 (2003), 441–448. https://doi.org/10.2307/1194312 doi: 10.2307/1194312 |
[11] | S. Liu, J. Zhou, Standing waves for quasilinear Schrödinger equations with indefinite potentials, J. Differ. Equ., 265 (2018), 3970–3987. https://doi.org/10.1016/j.jde.2018.05.024 doi: 10.1016/j.jde.2018.05.024 |
[12] | J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Differ. Equ., 187 (2003), 473–493. https://doi.org/10.1016/S0022-0396(02)00064-5 doi: 10.1016/S0022-0396(02)00064-5 |
[13] | J. Liu, Y. Wang, Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Commun. Partial Differ. Equ., 29 (2004), 879–901. https://doi.org/10.1081/PDE-120037335 doi: 10.1081/PDE-120037335 |
[14] | A. Kufner, Weighted Sobolev spaces, Leipzig Teubner-Texte zur Mathematik, 1980. |
[15] | S. Kurihara, Large-amplitude quasi-solitons in superfluids films, J. Phys. Soc. Jpn., 50 (1981), 326–3267. https://doi.org/10.1143/JPSJ.50.3262 doi: 10.1143/JPSJ.50.3262 |
[16] | Y. Leuyacc, S. Soares, On a Hamiltonian system with critical exponential growth, Milan J. Math., 87 (2019), 105–140. https://doi.org/10.1007/s00032-019-00294-3 doi: 10.1007/s00032-019-00294-3 |
[17] | A. Moameni, On a class of periodic quasilinear Schrödinger equations involving critical growth in $ \mathbb{R}^2$, J. Math. Anal. Appl., 334 (2007), 775–786. https://doi.org/10.1016/j.jmaa.2007.01.020 doi: 10.1016/j.jmaa.2007.01.020 |
[18] | J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077–1092. |
[19] | J. M. B. do Ó, O. H. Miyagaki, S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differ. Equ., 248 (2010), 722–744. https://doi.org/10.1016/j.jde.2009.11.030 doi: 10.1016/j.jde.2009.11.030 |
[20] | J. M. B. do Ó, O. H. Miyagaki, S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations: The critical exponential case, Nonlinear Anal., 67 (2007), 3357–3372. https://doi.org/10.1016/j.na.2006.10.018 doi: 10.1016/j.na.2006.10.018 |
[21] | J. M. do Ó, U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two, Calculus Var. Partial Differ. Equ., 38 (2010), 275–315. https://doi.org/10.1007/s00526-009-0286-6 doi: 10.1007/s00526-009-0286-6 |
[22] | S. Pohožaev, The Sobolev embedding in the special case $pl = n$, Moscow. Energet. Inst., 1965,158–170. |
[23] | M. Poppenberg, K. Schmitt, Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calculus Var. Partial Differ. Equ., 14 (2002), 329–344. https://doi.org/10.1007/s005260100105 doi: 10.1007/s005260100105 |
[24] | B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev., 50 (1994), 687–689. https://doi.org/10.1103/PhysRevE.50.R687 doi: 10.1103/PhysRevE.50.R687 |
[25] | N. Trudinger, On embedding into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473–483. |
[26] | S. H. M. Soares, Y. R. S. Leuyacc, Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity, Commun. Contemp. Math., 20 (2018), 1750053. https://doi.org/10.1142/S0219199717500535 doi: 10.1142/S0219199717500535 |
[27] | M. X. de Souza, U. B. Severo, G. F. Vieira, Solutions for a class of singular quasilinear equations involving critical growth in $ \mathbb{R}^2$, Math. Nachr., 295 (2022), 103–123. https://doi.org/10.1002/mana.201900240 doi: 10.1002/mana.201900240 |
[28] | M. de Souza, U. B. Severo, G. F. Vieira, On a nonhomogeneous and singular quasilinear equation involving critical growth in $ \mathbb{R}^2$, Comput. Math. Appl., 74 (2017), 513–531. https://doi.org/10.1016/j.camwa.2017.05.002 doi: 10.1016/j.camwa.2017.05.002 |
[29] | W. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55 (1977), 149–162. https://doi.org/10.1007/BF01626517 doi: 10.1007/BF01626517 |
[30] | M. Willem, Minimax theorems, Boston Birkhäuser, 1996. https://doi.org/10.1007/978-1-4612-4146-1 |
[31] | V. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR, 138 (1961), 805–808. |
[32] | Y. Zhang, H. H. Dong, X. E. Zhang, H. W. Yang, Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation, Comput. Math. Appl., 73 (2017), 246–252. https://doi.org/10.1016/j.camwa.2016.11.009 doi: 10.1016/j.camwa.2016.11.009 |