Research article

Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation

  • Received: 10 September 2022 Revised: 05 October 2022 Accepted: 12 October 2022 Published: 24 October 2022
  • MSC : 39B62, 52B55, 94B75

  • There are many benefits derived from the speculation regarding convexity in the fields of applied and pure science. According to their definitions, convexity and integral inequality are linked concepts. The construction and refinement of classical inequalities for various classes of convex and nonconvex functions have been extensively studied. In convex theory, Godunova-Levin functions play an important role, because they make it easier to deduce inequalities when compared to convex functions. Based on Bhunia and Samanta's total order relation, harmonically cr-$ h $-Godunova-Levin function is defined in this paper. Utilizing center order (CR) relationship, various types of inequalities can be introduced. (CR)-order relation enables us to derive some Hermite-Hadamard ($ \mathcal{H.H} $) inequality along with a Jensen-type inequality for harmonically $ h $-Godunova-Levin interval-valued functions (GL-$ \mathcal{IVFS} $). Many well-known and new convex functions are unified by this kind of convexity. For further verification of the accuracy of our findings, we provide some numerical examples.

    Citation: Waqar Afzal, Waqas Nazeer, Thongchai Botmart, Savin Treanţă. Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation[J]. AIMS Mathematics, 2023, 8(1): 1696-1712. doi: 10.3934/math.2023087

    Related Papers:

  • There are many benefits derived from the speculation regarding convexity in the fields of applied and pure science. According to their definitions, convexity and integral inequality are linked concepts. The construction and refinement of classical inequalities for various classes of convex and nonconvex functions have been extensively studied. In convex theory, Godunova-Levin functions play an important role, because they make it easier to deduce inequalities when compared to convex functions. Based on Bhunia and Samanta's total order relation, harmonically cr-$ h $-Godunova-Levin function is defined in this paper. Utilizing center order (CR) relationship, various types of inequalities can be introduced. (CR)-order relation enables us to derive some Hermite-Hadamard ($ \mathcal{H.H} $) inequality along with a Jensen-type inequality for harmonically $ h $-Godunova-Levin interval-valued functions (GL-$ \mathcal{IVFS} $). Many well-known and new convex functions are unified by this kind of convexity. For further verification of the accuracy of our findings, we provide some numerical examples.



    加载中


    [1] R. E. Moore, Methods and applications of interval analysis, Philadelphia, 1979.
    [2] J. M. Snyder, Interval analysis for computer graphics, Comput. Graphics, 26 (1992), 121–130. https:///doi.org/10.1145/133994.134024 doi: 10.1145/133994.134024
    [3] Y. H. Qian, J. Y. Liang, C. Y. Dang, Interval ordered information systems, Comput. Math. Appl., 56 (2009), 1994–2009. https://doi.org/10.1016/j.camwa.2008.04.021 doi: 10.1016/j.camwa.2008.04.021
    [4] M. S. Rahman, A. A. Shaikh, A. K. Bhunia, Necessary and sufficient optimality conditions for non-linear unconstrained and constrained optimization problem with interval valued objective function, Comput. Ind. Eng., 147 (2020), 106634. https://doi.org/10.1016/j.cie.2020.106634 doi: 10.1016/j.cie.2020.106634
    [5] E. Rothwell, M. J. Cloud, Automatic error analysis using intervals, IEEE Trans. Educ., 55 (2011), 9–15. https://doi.org/10.1109/TE.2011.2109722 doi: 10.1109/TE.2011.2109722
    [6] E. Weerdt, Q. P. Chu, J. A. Mulder, Neural network output optimization using interval analysis, IEEE Trans. Educ., 20 (2009), 638–653. https://doi.org/10.1109/TNN.2008.2011267 doi: 10.1109/TNN.2008.2011267
    [7] W. Gao, C. Song, F. Tin-Loi, Probabilistic interval analysis for structures with uncertainty, Struct. Saf., 32 (2010), 191–199. https://doi.org/10.1016/j.strusafe.2010.01.002 doi: 10.1016/j.strusafe.2010.01.002
    [8] X. J. Wang, L. Wang, Z. P. Qiu, A feasible implementation procedure for interval analysis method from measurement data, Appl. Math. Model., 38 (2014), 2377–2397. https://doi.org/10.1016/j.apm.2013.10.049 doi: 10.1016/j.apm.2013.10.049
    [9] S. Faisal, M. A Khan, S. Iqbal, Generalized Hermite-Hadamard-Mercer type inequalities via majorization, Filomat, 36 (2022), 469–483. https://doi.org/10.2298/FIL2202469F doi: 10.2298/FIL2202469F
    [10] S. Faisal, M. A. Khan, T. U. Khan, T. Saeed, A. M. Alshehri, E. R. Nwaeze, New Conticrete Hermite-Hadamard-Jensen-Mercer fractional inequalities, Symmetry, 14 (2022), 294. https://doi.org/10.3390/sym14020294 doi: 10.3390/sym14020294
    [11] S. S. Dragomir, Inequalities of Hermite-Hadamard type for functions of selfadjoint operators and matrices, J. Math. Inequal., 11 (2017), 241–259. https://doi.org/10.7153/jmi-11-23 doi: 10.7153/jmi-11-23
    [12] M. Kamenskii, G. Petrosyan, C. F. Wen, An existence result for a periodic boundary value problem of fractional semilinear di Kerential equations in a Banach space, J. Nonlinear Var. Anal., 5 (2021), 155–177. https://doi.org/10.23952/jnva.5.2021.1.10 doi: 10.23952/jnva.5.2021.1.10
    [13] D. Zhao, T. An, G. Ye, D. F. M. Torres, On Hermite-Hadamard type inequalities for harmonical $h$-convex interval-valued functions, Math. Inequal. Appl., 23 (2020), 95–105. https://doi.org/10.7153/mia-2020-23-08 doi: 10.7153/mia-2020-23-08
    [14] M. B. Khan, J. E. Macas-Diaz, S. Treanta, M. S. Soliman, H. G. Zaini, Hermite-Hadamard inequalities in fractional calculus for left and right harmonically convex functions via interval-valued settings, Fractal Fract., 6 (2022), 178. https://doi.org/10.3390/fractalfract6040178 doi: 10.3390/fractalfract6040178
    [15] W. Afzal, A. A. Lupaş, K. Shabbir, Hermite-Hadamard and Jensen-type inequalities for harmonical ($h$$_{1}$, $h$$_{2}$)-Godunova Levin interval-valued functions, Mathematics, 10 (2022), 2970. https://doi.org/10.3390/math10162970 doi: 10.3390/math10162970
    [16] C. P. Niculescu, L. E. Persson, Old and new on the Hermite-Hadamard inequality, Real Anal. Exch., 29 (2003), 663–686. https://doi.org/10.14321/realanalexch.29.2.0663 doi: 10.14321/realanalexch.29.2.0663
    [17] W. W. Breckner, Continuity of generalized convex and generalized concave set-valued functions, Rev. Anal. Numer. Theor. Approximation, 22 (1993), 39–51.
    [18] Y. Chalco-Cano, A. Flores-Franulic, H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Computat. Appl. Math., 31 (2012), 457–472. https://doi.org/10.1590/S1807-03022012000300002 doi: 10.1590/S1807-03022012000300002
    [19] T. M. Costa, H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inf. Sci., 420 (2017), 110–115. https://doi.org/10.1016/j.ins.2017.08.055 doi: 10.1016/j.ins.2017.08.055
    [20] M. V. Mihai, M. U. Awan, M. A. Noor, J. K. Kim, Hermite-Hadamard inequalities and their applications, J. Inequal. Appl., 2018 (2018), 309. https://doi.org//10.1186/s13660-018-1895-4 doi: 10.1186/s13660-018-1895-4
    [21] D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite–Hadamard type inequalities for $h$-convex interval-valued functions, J. Inequal. Appl., 1 (2018), 1–14. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3
    [22] M. U. Awan, M. A. Noor, K. I. Noor, A. G. Khan, Some new classes of convex functions and inequalities, Miskolc Math. Notes, 19 (2018), 2179. https://doi.org/10.18514/MMN.2018.2179 doi: 10.18514/MMN.2018.2179
    [23] C. Das, S. Mishra, P. K. Pradhan, On harmonic convexity (concavity) and application to non-linear programming problems, Opsearch, 40 (2003), 42–51. https://doi.org//10.1007/BF03399198 doi: 10.1007/BF03399198
    [24] S. Varosanec, On $h$-convexity, J. Math. Anal. Appl., 1 (2007), 303–311. https://doi.org//10.1016/j.jmaa.2006.02.086 doi: 10.1016/j.jmaa.2006.02.086
    [25] W. Afzal, K. Shabbir, T. Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued ($h$$_{1}$, $h$$_{2}$)-Godunova-Levin functions, AIMS Math., 7 (2022), 19372–19387. https://doi.org/10.3934/math.20221064 doi: 10.3934/math.20221064
    [26] X. J. Zhang, K. Shabbir, W. Afzal, H. Xiao, D. Lin, Hermite-Hadamard and Jensen-type inequalities via Riemann integral operator for a generalized class of Godunova-Levin functions, J. Math., 2022 (2022), 3830324. https://doi.org/10.1155/2022/3830324 doi: 10.1155/2022/3830324
    [27] Y. Wu, F. Qi, Discussions on two integral inequalities of Hermite-Hadamard type for convex functions, J. Comput. Appl. Math., 456 (2022), 114049. https://doi.org/10.1016/j.cam.2021.114049 doi: 10.1016/j.cam.2021.114049
    [28] J. E. Macias-Diaz, M. B. Khan, M. A Noor, A. A. A. Allah, S. M. Alghamdi, Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus, Aims Math., 7 (2022), 4266–4292. https://doi.org/10.3934/math.2022236 doi: 10.3934/math.2022236
    [29] M. A. Noor, K. I. Noor, M. U. Awan, S. Costache, Some integral inequalities for harmonically $h$-convex functions, Bull. Ser. A: Appl. Math. Phys, 77 (2015), 5–16.
    [30] M. B. Khan, M. A. Noor, N. A. Shah, K. M. Abualnaja, T. Botmart, Some new versions of Hermite-Hadamard integral inequalities in fuzzy fractional calculus for generalized pre-invex functions via fuzzy-interval-valued settings, Fractal Fract., 6 (2022), 83. https://doi.org/10.3390/fractalfract6020083 doi: 10.3390/fractalfract6020083
    [31] M. U. Awan, Integral inequalities for harmonically $s$-Godunova-Levin functions, Math. Inf., 29 (2014), 415–424.
    [32] C. Luo, H. Wang, T. Du, Fejér–Hermite–Hadamard type inequalities involving generalized $h$-convexity on fractal sets and their applications, Chaos Solitons Fract., 131 (2020), 109547. https://doi.org/10.1016/j.chaos.2019.109547 doi: 10.1016/j.chaos.2019.109547
    [33] W. Sun, Generalized-convexity on fractal sets and some Hadamard-type inequalities, Fractals, 28 (2020), 2050021. https://doi.org/10.1142/S0218348X20500218 doi: 10.1142/S0218348X20500218
    [34] O. Almutairi, A. Kilicman, Some integral inequalities for $h$-Godunova-Levin preinvexity, Symmetry, 11 (2019), 1500. https://doi.org/10.3390/sym11121500 doi: 10.3390/sym11121500
    [35] S. Ali, R. S. Ali, M. Vivas-Cortez, S. Mubeen, G. Rahman, K. S. Nisar, Some fractional integral inequalities via $h$-Godunova-Levin preinvex function, AIMS Math., 8 (2022), 13832–13844. https://doi/10.3934/math.2022763 doi: 10.3934/math.2022763
    [36] A. K. Bhunia, S. S. Samanta, A study of interval metric and its application in multi-objective optimization with interval objectives, Comput. Ind. Eng., 74 (2014), 169–178. https://doi/10.1016/j.cie.2014.05.014 doi: 10.1016/j.cie.2014.05.014
    [37] M. S. Rahman, A. A. Shaikh, A. K. Bhunia, Necessary and sufficient optimality conditions for non-linear unconstrained and constrained optimization problem with interval valued objective function, Comput. Ind. Eng., 147 (2020), 106634. https://doi/10.1016/j.cie.2020.106634 doi: 10.1016/j.cie.2020.106634
    [38] F. F. Shi, G. J. Ye, W. Liu, D. F. Zhao, cr-$h$-convexity and some inequalities for cr-$h$-convex function, Filomat, 10 (2022).
    [39] W. Liu, F. Shi, G. J. Ye, D. F. Zhao, The properties of harmonically cr-$h$-convex function and its applications, Mathematics, 10 (2022), 2089. https://doi/10.3390/math10122089 doi: 10.3390/math10122089
    [40] S. Markov, Calculus for interval functions of a real variable, Computing, 22 (1979), 325–337. https://doi/10.1007/BF02265313 doi: 10.1007/BF02265313
    [41] W. Afzal, M. Abbas, J. E. Macias-Diaz, S. Treanta, Some $h$-Godunova–Levin function inequalities using center radius (cr) order, Fractal Fract., 6 (2022), 518. https://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1587) PDF downloads(95) Cited by(16)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog