Research article Special Issues

A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system

  • Received: 16 August 2022 Revised: 20 September 2022 Accepted: 28 September 2022 Published: 24 October 2022
  • MSC : 26A33, 35C10, 35R11, 44A10

  • In this research, a hybrid method, entitled the Laplace Residual Power Series technique, is adapted to find series solutions to a time-fractional model of Navier-Stokes equations in the sense of Caputo derivative. We employ the proposed method to construct analytical solutions to the target problem using the idea of the Laplace transform and the residual function with the concept of limit at infinity. A simple modification of the suggested method is presented to deal easily with the nonlinear terms constructed on the properties of the power series. Three interesting examples are solved and compared with the exact solutions to test the reliability, simplicity, and capacity of the presented method of solving systems of fractional partial differential equations. The results indicate that the used technique is a simple approach for solving nonlinear fractional differential equations since it depends only on the residual functions and the concept of the limit at infinity without needing differentiation or other complex computations.

    Citation: Emad Salah, Ahmad Qazza, Rania Saadeh, Ahmad El-Ajou. A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system[J]. AIMS Mathematics, 2023, 8(1): 1713-1736. doi: 10.3934/math.2023088

    Related Papers:

  • In this research, a hybrid method, entitled the Laplace Residual Power Series technique, is adapted to find series solutions to a time-fractional model of Navier-Stokes equations in the sense of Caputo derivative. We employ the proposed method to construct analytical solutions to the target problem using the idea of the Laplace transform and the residual function with the concept of limit at infinity. A simple modification of the suggested method is presented to deal easily with the nonlinear terms constructed on the properties of the power series. Three interesting examples are solved and compared with the exact solutions to test the reliability, simplicity, and capacity of the presented method of solving systems of fractional partial differential equations. The results indicate that the used technique is a simple approach for solving nonlinear fractional differential equations since it depends only on the residual functions and the concept of the limit at infinity without needing differentiation or other complex computations.



    加载中


    [1] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000.
    [2] D. Kumar, D. Baleanu, Fractional calculus and its applications in physics, Front. Phys., 7 (2019), 81. https://doi.org/10.3389/fphy.2019.00081 doi: 10.3389/fphy.2019.00081
    [3] G. Gharib, R. Saadeh, Reduction of the self-dual yang-mills equations to sinh-poisson equation and exact solutions, WSEAS T. Math., 20 (2021), 540–546. https://doi.org/10.37394/23206.2021.20.57 doi: 10.37394/23206.2021.20.57
    [4] A. Qazza, R. Hatamleh, The existence of a solution for semi-linear abstract differential equations with infinite B chains of the characteristic sheaf, Int. J. Appl. Math., 31 (2018), 125957129. https://doi.org/10.12732/IJAM.V31I5.7 doi: 10.12732/IJAM.V31I5.7
    [5] H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
    [6] A. Qazza, R. Hatamleh, N. Alodat, About the solution stability of Volterra integral equation with random kernel, Far East J. Math. Sci., 100 (2016), 671–680. https://doi.org/10.17654/MS100050671 doi: 10.17654/MS100050671
    [7] R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10
    [8] A. Omame, D. Okuonghae, U. K. Nwajeri, C. P. Onyenegecha, A fractional-order multi-vaccination model for COVID-19 with non-singular kernel, Alex. Eng. J., 61 (2021), 6089–6104. https://doi.org/10.1016/j.aej.2021.11.037 doi: 10.1016/j.aej.2021.11.037
    [9] A. Qazza, R. Hatamleh, Dirichlet problem in a simply connected domain, bounded by the nontrivial kind, Adv. Differ. Equ. Contr., 17 (2016), 177–188. http://dx.doi.org/10.17654/DE017030177 doi: 10.17654/DE017030177
    [10] E. C. De Oliveira, J. A. Tenreiro Machado, A review of definitions for fractional derivatives and integral, Math. Probl. Eng., 2014 (2014), 238459. https://doi.org/10.1155/2014/238459 doi: 10.1155/2014/238459
    [11] G. S. Teodoro, J. T. Machado, E. C. De Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195–208. https://doi.org/10.1016/j.jcp.2019.03.008 doi: 10.1016/j.jcp.2019.03.008
    [12] S. A. Ahmed, A. Qazza, R. Saadeh, Exact solutions of nonlinear partial differential equations via the new double integral transform combined with iterative method, Axioms, 11 (2022), 247. https://doi.org/10.3390/axioms11060247 doi: 10.3390/axioms11060247
    [13] S.A. Altaie, N. Anakira, A. Jameel, O. Ababneh, A. Qazza, A. K. Alomari, Homotopy analysis method analytical scheme for developing a solution to partial differential equations in fuzzy environment, Fractal Fract., 6 (2022), 419. https://doi.org/10.3390/fractalfract6080419 doi: 10.3390/fractalfract6080419
    [14] R. Z. Saadeh, B. F. Ghazal, A new approach on transforms: formable integral transform and its applications, Axioms, 10 (2021), 332. https://doi.org/10.3390/axioms10040332 doi: 10.3390/axioms10040332
    [15] R. Saadeh, A. Qazza, A. Burqan, A new integral transform: ARA transform and its properties and applications, Symmetry, 12 (2020), 925. https://doi.org/10.3390/sym12060925 doi: 10.3390/sym12060925
    [16] A. Qazza, A. Burqan, R. Saadeh. A new attractive method in solving families of fractional differential equations by a new transform, Mathematics, 9 (2021), 3039. https://doi.org/10.3390/math9233039 doi: 10.3390/math9233039
    [17] A. Burqan, R. Saadeh, A. Qazza, A novel numerical approach in solving fractional neutral pantograph equations via the ARA integral transform, Symmetry, 14 (2022), 50. https://doi.org/10.3390/sym14010050 doi: 10.3390/sym14010050
    [18] T. Eriqat, A. El-Ajou, N. O. Moa'ath, Z. Al-Zhour, S. Momani, A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations, Chaos, Solito. Fract., 138 (2020), 109957. https://doi.org/10.1016/j.chaos.2020.109957 doi: 10.1016/j.chaos.2020.109957
    [19] A. El-Ajou, Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach, Eur. Phys. J. Plus, 136 (2021), 229.
    [20] A. El-Ajou, Z. Al-Zhour, A vector series solution for a class of hyperbolic system of Caputo-time-fractional partial differential equations with variable coefficients, Front. Phys., 9 (2021), 525250. https://doi.org/10.3389/fphy.2021.525250 doi: 10.3389/fphy.2021.525250
    [21] M. N. Oqielat, A. El-Ajou, Z. Al-Zhour, T. Eriqat, M. Al-Smadi, A new approach to solving fuzzy quadratic riccati differential equations, Int. J. Fuzzy Log. Inte., 22 (2022), 23–47. https://doi.org/10.5391/ijfis.2022.22.1.23 doi: 10.5391/ijfis.2022.22.1.23
    [22] M. N. Oqielat, T. Eriqat, Z. Al-Zhour, A. El-Ajou, S. Momani, Numerical solutions of time-fractional nonlinear water wave partial differential equation via Caputo fractional derivative: an effective analytical method and some applications, Appl. Comput. Math., 21 (2022), 207–222. https://doi.org/10.30546/1683-6154.21.2.2022.207 doi: 10.30546/1683-6154.21.2.2022.207
    [23] R. Saadeh, A. Burqan, A. El-Ajou, Reliable solutions to fractional Lane-Emden equations via Laplace transform and residual error function, Alex. Eng. J., 61 (2022), 10551–10562. https://doi.org/10.1016/j.aej.2022.04.004 doi: 10.1016/j.aej.2022.04.004
    [24] T. Eriqat, M. N. Oqielat, Z. Al-Zhour, A. El-Ajou, A. S. Bataineh, Revisited Fisher's equation and logistic system model: a new fractional approach and some modifications, Int. J. Dynam. Contr., 2022, 1–9. https://doi.org/10.1007/s40435-022-01020-5 doi: 10.1007/s40435-022-01020-5
    [25] M. N. Oqielat, T. Eriqat, Z. Al-Zhour, O. Ogilat, A. El-Ajou, I. Hashim, Construction of fractional series solutions to nonlinear fractional reaction-diffusion for bacteria growth model via Laplace residual power series method, Int. J. Dynam. Contr., 2022, 251112998. https://doi.org/10.1007/s40435-022-01001-8 doi: 10.1007/s40435-022-01001-8
    [26] H. Zhang, J. Cheng, H. Zhang, W. Zhang, J. Cao, Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays, Chaos, Soliton. Fract., 152 (2021), 111432. https://doi.org/10.1016/j.chaos.2021.111432 doi: 10.1016/j.chaos.2021.111432
    [27] C. Wang, H. Zhang, I. Stamova, J. Cao, Global synchronization for BAM delayed reaction-diffusion neural networks with fractional partial differential operator, J. Franklin I., 2022. https://doi.org/10.1016/j.jfranklin.2022.08.038 doi: 10.1016/j.jfranklin.2022.08.038
    [28] G. Ali, I. Ahmad, K. Shah, T. Abdeljawad, Iterative analysis of nonlinear BBM equations under nonsingular fractional order derivative, Adv. Math. Phys., 2020 (2020), 3131856. https://doi.org/10.1155/2020/3131856 doi: 10.1155/2020/3131856
    [29] K. Shah, F. Jarad, T. Abdeljawad, Stable numerical results to a class of time-space fractional partial differential equations via spectral method, J. Adv. Res., 25 (2020), 39–48. https://doi.org/10.1016/j.jare.2020.05.022 doi: 10.1016/j.jare.2020.05.022
    [30] A. Qazza, A. Burqan, R. Saadeh, Application of ARA residual power series method in solving systems of fractional differential equations, Math. Probl. Eng., 2022 (2022), 6939045. https://doi.org/10.1155/2022/6939045 doi: 10.1155/2022/6939045
    [31] A. El-Ajou, Taylor's expansion for fractional matrix functions: theory and applications, J. Math. Comput. Sci., 21 (2020), 214699622. https://doi.org/10.22436/jmcs.021.01.01 doi: 10.22436/jmcs.021.01.01
    [32] A. El-Ajou, M. Al-Smadi, M.N. Oqielat, S. Momani, S. Hadid, Smooth expansion to solve high-order linear conformable fractional PDEs via residual power series method: applications to physical and engineering equations, Ain Shams Eng. J., 11 (2020), 1243–1254. https://doi.org/10.1016/j.asej.2020.03.016 doi: 10.1016/j.asej.2020.03.016
    [33] A. Burqan, R. Saadeh, A. Qazza, ARA-residual power series method for solving partial fractional differential equations, Alex. Eng. J., 62 (2023), 47–62. https://doi.org/10.1016/j.aej.2022.07.022 doi: 10.1016/j.aej.2022.07.022
    [34] R. Saadeh, A. Qazza, A. Burqan, On the double ARA-sumudu transform and its applications, Mathematics, 10 (2022), 2581. https://doi.org/10.3390/math10152581 doi: 10.3390/math10152581
    [35] A. Burqan, A. El-Ajou, R. S.deh, M. Al-Smadi, A new efficient technique using Laplace transforms and smooth expansions to construct a series solution to the time-fractional Navier-Stokes equations, Alex. Eng. J., 61 (2022), 1069–1077. https://doi.org/10.1016/j.aej.2021.07.020 doi: 10.1016/j.aej.2021.07.020
    [36] S. G. Buonopane, D. P. Billington, Theory and history of suspension bridge design from 1823 to 1940, J. Struct. Eng., 119 (1993). https://doi.org/10.1061/(ASCE)0733-9445(1993)119:3(954) doi: 10.1061/(ASCE)0733-9445(1993)119:3(954)
    [37] R. Saadeh, Numerical algorithm to solve a coupled system of fractional order using a novel reproducing kernel method, Alex. Eng. J., 60 (2021), 4583–4591. https://doi.org/10.1016/j.aej.2021.03.033 doi: 10.1016/j.aej.2021.03.033
    [38] U. Frisch, B. Hasslacher, Y. Pomeau, Lattice-gas automata for the Navier-Stokes equation, Phys. Rev. Lett., 56 (1986), 1505. https://doi.org/10.1103/PhysRevLett.56.1505 doi: 10.1103/PhysRevLett.56.1505
    [39] Y. M. Chu, N. A. Shah, P. Agarwal, J. D. Chung, Analysis of fractional multi-dimensional Navier-Stokes equation, Adv. Differ. Equ., 2021 (2021), 91.
    [40] S. Mahmood, R. Shah, H. Khan, M. Arif, Laplace adomian decomposition method for multi-dimensional time fractional model of Navier-Stokes equation, Symmetry, 11 (2019), 149. https://doi.org/10.3390/sym11020149 doi: 10.3390/sym11020149
    [41] B. K. Singh, P. Kumar, FRDTM for numerical simulation of the multi-dimensional, time-fractional model of Navier-Stokes equation, Ain Shams Eng. J., 9 (2018), 827–834. https://doi.org/10.1016/j.asej.2016.04.009 doi: 10.1016/j.asej.2016.04.009
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1484) PDF downloads(91) Cited by(19)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog