Research article

Uniform regularity of the isentropic Navier-Stokes-Maxwell system

  • Received: 28 October 2021 Revised: 02 January 2022 Accepted: 04 January 2022 Published: 24 January 2022
  • MSC : 35B25, 35Q30, 35Q35

  • It is well known that Navier-Stokes-Maxwell system can be derived from the Vlasov-Maxwell-Boltzmann system. In this paper, the uniform regularity of strong solutions to the isentropic compressible Navier-Stokes-Maxwell system are proved. Here our result is obtained by using the bilinear commutator and product estimates.

    Citation: Qingkun Xiao, Jianzhu Sun, Tong Tang. Uniform regularity of the isentropic Navier-Stokes-Maxwell system[J]. AIMS Mathematics, 2022, 7(4): 6694-6701. doi: 10.3934/math.2022373

    Related Papers:

  • It is well known that Navier-Stokes-Maxwell system can be derived from the Vlasov-Maxwell-Boltzmann system. In this paper, the uniform regularity of strong solutions to the isentropic compressible Navier-Stokes-Maxwell system are proved. Here our result is obtained by using the bilinear commutator and product estimates.



    加载中


    [1] I. Imai, Chapter I. General principles of magneto-fluid dynamics, Prog. Theor. Phys. Supp., 24 (1962), 1–34. http://dx.doi.org/10.1143/PTPS.24.1 doi: 10.1143/PTPS.24.1
    [2] R. J. Duan, Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., 10 (2012), 133–197. http://dx.doi.org/10.1142/S0219530512500078 doi: 10.1142/S0219530512500078
    [3] H. Gong, J. Li, X. Liu, X. Zhang, Local well-posedness of isentropic compressible Navier-Stokes equations with vacuum, Commun. Math. Sci., 18 (2020), 1891–1909. http://dx.doi.org/10.4310/CMS.2020.v18.n7.a4 doi: 10.4310/CMS.2020.v18.n7.a4
    [4] X. Huang, On local strong and classical solutions to the three-dimensional barotropic compressible Navier-Stokes equations with vacuum, Sci. China Math., 64 (2021), 1771–1788. http://dx.doi.org/10.1007/s11425-019-9755-3 doi: 10.1007/s11425-019-9755-3
    [5] S. Jiang, F. Li, Rigorous derivation of the compressible magnetohydrodynamic equations from the electromagnetic fluid system, Nonlinearity, 25 (2012), 1735–1752. http://dx.doi.org/10.1088/0951-7715/25/6/1735 doi: 10.1088/0951-7715/25/6/1735
    [6] S. Jiang, F. Li, Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, Asymptotic Anal., 95 (2015), 161–185. http://dx.doi.org/10.3233/asy-151321 doi: 10.3233/asy-151321
    [7] S. Jiang, F. Li, Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system, Sci. China Math., 58 (2015), 61–76. http://dx.doi.org/10.1007/s11425-014-4923-y doi: 10.1007/s11425-014-4923-y
    [8] J. Fan, F. Li, G. Nakamura, Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain, Kinet. Relat. Models, 9 (2016), 443–453. http://dx.doi.org/10.3934/krm.2016002 doi: 10.3934/krm.2016002
    [9] J. Fan, F. Li, G. Nakamura, Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain II: Global existence case, J. Math. Fluid Mech., 20 (2018), 359–378. http://dx.doi.org/10.1007/s00021-017-0322-9 doi: 10.1007/s00021-017-0322-9
    [10] J. Fan, F. Li, G. Nakamura, Uniform well-posedness and singular limits of the isentropic Navier-Stokes-Maxwell system in a bounded domain, Z. Angew Math. Phys., 66 (2015), 1581–1593. http://dx.doi.org/10.1007/s00033-014-0484-8 doi: 10.1007/s00033-014-0484-8
    [11] Y. Chen, F. Li, Z. Zhang, Large time behavior of the isentropic compressible Navier-Stokes-Maxwell system, Z. Angew Math. Phys., 67 (2016), 91. http://dx.doi.org/10.1007/s00033-016-0685-4 doi: 10.1007/s00033-016-0685-4
    [12] Y. Mi, J. Gao, Long-time behavior of solution for the compressible Navier-Stokes-Maxwell equations in $ \mathbb{R}^3 $, Math. Method. Appl. Sci., 41 (2018), 1424–1438. http://dx.doi.org/10.1002/mma.4672 doi: 10.1002/mma.4672
    [13] A. I. Vol'pert, S. I. Hudjaev, The Cauchy problem for composite systems of nonlinear differential equations, Math. USSR. SB., 16 (1972), 504–528. http://dx.doi.org/10.1070/SM1972v016n04ABEH001438 doi: 10.1070/SM1972v016n04ABEH001438
    [14] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. http://dx.doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704
    [15] H. Triebel, Theory of function spaces, Basel: Springer, 1983. http://dx.doi.org/10.1007/978-3-0346-0416-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1564) PDF downloads(76) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog