It is well known that Navier-Stokes-Maxwell system can be derived from the Vlasov-Maxwell-Boltzmann system. In this paper, the uniform regularity of strong solutions to the isentropic compressible Navier-Stokes-Maxwell system are proved. Here our result is obtained by using the bilinear commutator and product estimates.
Citation: Qingkun Xiao, Jianzhu Sun, Tong Tang. Uniform regularity of the isentropic Navier-Stokes-Maxwell system[J]. AIMS Mathematics, 2022, 7(4): 6694-6701. doi: 10.3934/math.2022373
It is well known that Navier-Stokes-Maxwell system can be derived from the Vlasov-Maxwell-Boltzmann system. In this paper, the uniform regularity of strong solutions to the isentropic compressible Navier-Stokes-Maxwell system are proved. Here our result is obtained by using the bilinear commutator and product estimates.
[1] | I. Imai, Chapter I. General principles of magneto-fluid dynamics, Prog. Theor. Phys. Supp., 24 (1962), 1–34. http://dx.doi.org/10.1143/PTPS.24.1 doi: 10.1143/PTPS.24.1 |
[2] | R. J. Duan, Green's function and large time behavior of the Navier-Stokes-Maxwell system, Anal. Appl., 10 (2012), 133–197. http://dx.doi.org/10.1142/S0219530512500078 doi: 10.1142/S0219530512500078 |
[3] | H. Gong, J. Li, X. Liu, X. Zhang, Local well-posedness of isentropic compressible Navier-Stokes equations with vacuum, Commun. Math. Sci., 18 (2020), 1891–1909. http://dx.doi.org/10.4310/CMS.2020.v18.n7.a4 doi: 10.4310/CMS.2020.v18.n7.a4 |
[4] | X. Huang, On local strong and classical solutions to the three-dimensional barotropic compressible Navier-Stokes equations with vacuum, Sci. China Math., 64 (2021), 1771–1788. http://dx.doi.org/10.1007/s11425-019-9755-3 doi: 10.1007/s11425-019-9755-3 |
[5] | S. Jiang, F. Li, Rigorous derivation of the compressible magnetohydrodynamic equations from the electromagnetic fluid system, Nonlinearity, 25 (2012), 1735–1752. http://dx.doi.org/10.1088/0951-7715/25/6/1735 doi: 10.1088/0951-7715/25/6/1735 |
[6] | S. Jiang, F. Li, Convergence of the complete electromagnetic fluid system to the full compressible magnetohydrodynamic equations, Asymptotic Anal., 95 (2015), 161–185. http://dx.doi.org/10.3233/asy-151321 doi: 10.3233/asy-151321 |
[7] | S. Jiang, F. Li, Zero dielectric constant limit to the non-isentropic compressible Euler-Maxwell system, Sci. China Math., 58 (2015), 61–76. http://dx.doi.org/10.1007/s11425-014-4923-y doi: 10.1007/s11425-014-4923-y |
[8] | J. Fan, F. Li, G. Nakamura, Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain, Kinet. Relat. Models, 9 (2016), 443–453. http://dx.doi.org/10.3934/krm.2016002 doi: 10.3934/krm.2016002 |
[9] | J. Fan, F. Li, G. Nakamura, Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain II: Global existence case, J. Math. Fluid Mech., 20 (2018), 359–378. http://dx.doi.org/10.1007/s00021-017-0322-9 doi: 10.1007/s00021-017-0322-9 |
[10] | J. Fan, F. Li, G. Nakamura, Uniform well-posedness and singular limits of the isentropic Navier-Stokes-Maxwell system in a bounded domain, Z. Angew Math. Phys., 66 (2015), 1581–1593. http://dx.doi.org/10.1007/s00033-014-0484-8 doi: 10.1007/s00033-014-0484-8 |
[11] | Y. Chen, F. Li, Z. Zhang, Large time behavior of the isentropic compressible Navier-Stokes-Maxwell system, Z. Angew Math. Phys., 67 (2016), 91. http://dx.doi.org/10.1007/s00033-016-0685-4 doi: 10.1007/s00033-016-0685-4 |
[12] | Y. Mi, J. Gao, Long-time behavior of solution for the compressible Navier-Stokes-Maxwell equations in $ \mathbb{R}^3 $, Math. Method. Appl. Sci., 41 (2018), 1424–1438. http://dx.doi.org/10.1002/mma.4672 doi: 10.1002/mma.4672 |
[13] | A. I. Vol'pert, S. I. Hudjaev, The Cauchy problem for composite systems of nonlinear differential equations, Math. USSR. SB., 16 (1972), 504–528. http://dx.doi.org/10.1070/SM1972v016n04ABEH001438 doi: 10.1070/SM1972v016n04ABEH001438 |
[14] | T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. http://dx.doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704 |
[15] | H. Triebel, Theory of function spaces, Basel: Springer, 1983. http://dx.doi.org/10.1007/978-3-0346-0416-1 |