Let $ G $ be a graph. A dissociation set of $ G $ is a subset of vertices that induces a subgraph with vertex degree at most 1. The dissociation polynomial of $ G $ is $ D_{G}(\lambda) = \sum_{D \in \mathcal{D}(G)} \lambda^{|D|} $, where $ \mathcal{D}(G) $ is the set of all dissociation sets of $ G $. In this paper, we prove that for any cubic graph $ G $ and any $ \lambda \in(0, 1] $,
$ \frac{1}{|V(G)|} \ln D_{G}(\lambda) \leq \frac{1}{4} \ln D_{K_4}(\lambda) $
with equality if and only if $ G $ is a disjoint union of copies of the complete graph $ K_{4} $. When $ \lambda = 1 $, the value of $ D_G(\lambda) $ is exactly the number of dissociation sets of $ G $. Hence, for any cubic graph $ G $ on $ n $ vertices, $ |\mathcal{D}(G)|\leq|\mathcal{D}(K_4)|^{n/4} = 11^{n/4}. $
Citation: Jianhua Tu, Junyi Xiao, Rongling Lang. Counting the number of dissociation sets in cubic graphs[J]. AIMS Mathematics, 2023, 8(5): 10021-10032. doi: 10.3934/math.2023507
Let $ G $ be a graph. A dissociation set of $ G $ is a subset of vertices that induces a subgraph with vertex degree at most 1. The dissociation polynomial of $ G $ is $ D_{G}(\lambda) = \sum_{D \in \mathcal{D}(G)} \lambda^{|D|} $, where $ \mathcal{D}(G) $ is the set of all dissociation sets of $ G $. In this paper, we prove that for any cubic graph $ G $ and any $ \lambda \in(0, 1] $,
$ \frac{1}{|V(G)|} \ln D_{G}(\lambda) \leq \frac{1}{4} \ln D_{K_4}(\lambda) $
with equality if and only if $ G $ is a disjoint union of copies of the complete graph $ K_{4} $. When $ \lambda = 1 $, the value of $ D_G(\lambda) $ is exactly the number of dissociation sets of $ G $. Hence, for any cubic graph $ G $ on $ n $ vertices, $ |\mathcal{D}(G)|\leq|\mathcal{D}(K_4)|^{n/4} = 11^{n/4}. $
[1] | J. Cutler, A. J. Radcliffe, Minimizing the number of independent sets in triangle-free regular graphs, Discrete Math., 341 (2018), 793–800. https://doi.org/10.1016/j.disc.2017.11.016 doi: 10.1016/j.disc.2017.11.016 |
[2] | E. Davies, M. Jenssen, W. Perkins, B. Roberts, Independent sets, matchings, and occupancy fractions, J. Lond. Math. Soc., 96 (2017), 47–66. https://doi.org/10.1112/jlms.12056 |
[3] | E. Davies, M. Jenssen, W. Perkins, B. Roberts, Extremes of the internal energy of the Potts model on cubic graphs, Random Struct. Algor., 53 (2018), 59–75. https://doi.org/10.1002/rsa.20767 doi: 10.1002/rsa.20767 |
[4] | D. Galvin, P. Tetali, On weighted graph homomorphisms, Discrete Math. Theor. Comput. Sci., 63 (2004), 97–104. https://doi.org/10.1090/dimacs/063/07 doi: 10.1090/dimacs/063/07 |
[5] | J. Kahn, An entropy approach to the hard-core model on bipartite graphs, Combin. Probab. Comput., 10 (2001), 219–237. https://doi.org/10.1017/S0963548301004631 doi: 10.1017/S0963548301004631 |
[6] | G. Perarnau, W. Perkins, Counting independent sets in cubic graphs of given girth, J. Combin. Theory Ser. B, 133 (2018), 211–242. https://doi.org/10.1016/j.jctb.2018.04.009 doi: 10.1016/j.jctb.2018.04.009 |
[7] | M. Yannakakis, Node-deletion problems on bipartite graphs, SIAM J. Comput., 10 (1981). https://doi.org/10.1137/0210022 |
[8] | Y. F. Zhao, The number of independent sets in a regular graph, Combin. Probab. Comput., 19 (2010), 315–320. https://doi.org/10.1017/S0963548309990538 doi: 10.1017/S0963548309990538 |