Research article

Counting the number of dissociation sets in cubic graphs

  • Received: 28 September 2022 Revised: 09 February 2023 Accepted: 15 February 2023 Published: 23 February 2023
  • MSC : 05A17, 05C31, 05C69

  • Let $ G $ be a graph. A dissociation set of $ G $ is a subset of vertices that induces a subgraph with vertex degree at most 1. The dissociation polynomial of $ G $ is $ D_{G}(\lambda) = \sum_{D \in \mathcal{D}(G)} \lambda^{|D|} $, where $ \mathcal{D}(G) $ is the set of all dissociation sets of $ G $. In this paper, we prove that for any cubic graph $ G $ and any $ \lambda \in(0, 1] $,

    $ \frac{1}{|V(G)|} \ln D_{G}(\lambda) \leq \frac{1}{4} \ln D_{K_4}(\lambda) $

    with equality if and only if $ G $ is a disjoint union of copies of the complete graph $ K_{4} $. When $ \lambda = 1 $, the value of $ D_G(\lambda) $ is exactly the number of dissociation sets of $ G $. Hence, for any cubic graph $ G $ on $ n $ vertices, $ |\mathcal{D}(G)|\leq|\mathcal{D}(K_4)|^{n/4} = 11^{n/4}. $

    Citation: Jianhua Tu, Junyi Xiao, Rongling Lang. Counting the number of dissociation sets in cubic graphs[J]. AIMS Mathematics, 2023, 8(5): 10021-10032. doi: 10.3934/math.2023507

    Related Papers:

  • Let $ G $ be a graph. A dissociation set of $ G $ is a subset of vertices that induces a subgraph with vertex degree at most 1. The dissociation polynomial of $ G $ is $ D_{G}(\lambda) = \sum_{D \in \mathcal{D}(G)} \lambda^{|D|} $, where $ \mathcal{D}(G) $ is the set of all dissociation sets of $ G $. In this paper, we prove that for any cubic graph $ G $ and any $ \lambda \in(0, 1] $,

    $ \frac{1}{|V(G)|} \ln D_{G}(\lambda) \leq \frac{1}{4} \ln D_{K_4}(\lambda) $

    with equality if and only if $ G $ is a disjoint union of copies of the complete graph $ K_{4} $. When $ \lambda = 1 $, the value of $ D_G(\lambda) $ is exactly the number of dissociation sets of $ G $. Hence, for any cubic graph $ G $ on $ n $ vertices, $ |\mathcal{D}(G)|\leq|\mathcal{D}(K_4)|^{n/4} = 11^{n/4}. $



    加载中


    [1] J. Cutler, A. J. Radcliffe, Minimizing the number of independent sets in triangle-free regular graphs, Discrete Math., 341 (2018), 793–800. https://doi.org/10.1016/j.disc.2017.11.016 doi: 10.1016/j.disc.2017.11.016
    [2] E. Davies, M. Jenssen, W. Perkins, B. Roberts, Independent sets, matchings, and occupancy fractions, J. Lond. Math. Soc., 96 (2017), 47–66. https://doi.org/10.1112/jlms.12056
    [3] E. Davies, M. Jenssen, W. Perkins, B. Roberts, Extremes of the internal energy of the Potts model on cubic graphs, Random Struct. Algor., 53 (2018), 59–75. https://doi.org/10.1002/rsa.20767 doi: 10.1002/rsa.20767
    [4] D. Galvin, P. Tetali, On weighted graph homomorphisms, Discrete Math. Theor. Comput. Sci., 63 (2004), 97–104. https://doi.org/10.1090/dimacs/063/07 doi: 10.1090/dimacs/063/07
    [5] J. Kahn, An entropy approach to the hard-core model on bipartite graphs, Combin. Probab. Comput., 10 (2001), 219–237. https://doi.org/10.1017/S0963548301004631 doi: 10.1017/S0963548301004631
    [6] G. Perarnau, W. Perkins, Counting independent sets in cubic graphs of given girth, J. Combin. Theory Ser. B, 133 (2018), 211–242. https://doi.org/10.1016/j.jctb.2018.04.009 doi: 10.1016/j.jctb.2018.04.009
    [7] M. Yannakakis, Node-deletion problems on bipartite graphs, SIAM J. Comput., 10 (1981). https://doi.org/10.1137/0210022
    [8] Y. F. Zhao, The number of independent sets in a regular graph, Combin. Probab. Comput., 19 (2010), 315–320. https://doi.org/10.1017/S0963548309990538 doi: 10.1017/S0963548309990538
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(864) PDF downloads(113) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog