Research article

Piecewise reproducing kernel-based symmetric collocation approach for linear stationary singularly perturbed problems

  • Received: 05 April 2020 Accepted: 03 July 2020 Published: 23 July 2020
  • MSC : 65L60, 65R20

  • The aim of this paper is to develop an accurate symmetric collocation scheme for a class of linear stationary singular perturbation problems with two boundary layers. To adapt to the character of solutions, piecewise reproducing kernels is constructed. In the boundary layers intervals, inverse multiquadrics kernel function is employed. In the regular interval, exponential kernel function is used. On the basis of the piecewise reproducing kernels, a new symmetric collocation technique is presented for the considered linear stationary singular perturbation problems. Results of numerical tests illustrate that our method is easy to implement and is uniformly effective for any small ε.

    Citation: F. Z. Geng. Piecewise reproducing kernel-based symmetric collocation approach for linear stationary singularly perturbed problems[J]. AIMS Mathematics, 2020, 5(6): 6020-6029. doi: 10.3934/math.2020385

    Related Papers:

  • The aim of this paper is to develop an accurate symmetric collocation scheme for a class of linear stationary singular perturbation problems with two boundary layers. To adapt to the character of solutions, piecewise reproducing kernels is constructed. In the boundary layers intervals, inverse multiquadrics kernel function is employed. In the regular interval, exponential kernel function is used. On the basis of the piecewise reproducing kernels, a new symmetric collocation technique is presented for the considered linear stationary singular perturbation problems. Results of numerical tests illustrate that our method is easy to implement and is uniformly effective for any small ε.


    加载中


    [1] M. K. Kadalbajoo, P. Arora, V. Gupta, Collocation method using artificial viscosity for solving stiff singularly perturbed turning point problem having twin boundary layers, Comput. Math. Appl., 61 (2014), 1595-1607.
    [2] G. M. Amiraliyev, F. Erdogan, Uniform numerical method for singularly perturbed delay differential equations, Comput. Math. Appl., 53 (2007), 1251-1259. doi: 10.1016/j.camwa.2006.07.009
    [3] G. M. Amiraliyev, E. Cimen, Numerical method for a singularly perturbed convection diffusion problem with delay, Appl. Math. Comput., 216 (2010), 2351-2359.
    [4] P. Rai, K. K. Sharma, Numerical study of singularly perturbed differential-difference equation arising in the modeling of neuronal variability, Comput. Math. Appl., 63 (2012), 118-132. doi: 10.1016/j.camwa.2011.10.078
    [5] P. Rai, K. K. Sharma, Numerical analysis of singularly perturbed delay differential turning point problem, Appl. Math. Comput., 218 (2011), 3483-3498.
    [6] S. Natesan, J. Jayakumar, J. Vigo-Aguiar, Parameter uniform numerical method for singularly perturbed turning point problems exhibiting boundary layers, J. Comput. Appl. Math., 158 (2003), 121-134. doi: 10.1016/S0377-0427(03)00476-X
    [7] A. T. Chekole, G. F. Duresssa, G. G. Kiltu, PNon-polynomial septic spline method for singularly perturbed two point boundary value problems of order three, J. Taibah Univ. Sci., 13 (2019), 651-660. doi: 10.1080/16583655.2019.1617986
    [8] F. Z. Geng, S. P. Qian, Modified reproducing kernel method for singularly perturbed boundary value problems with a delay, Appl. Math. Model., 39 (2015), 5592-5597. doi: 10.1016/j.apm.2015.01.021
    [9] F. Z. Geng, S. P. Qian, Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers, Appl. Math. Lett., 26 (2013), 998-1004. doi: 10.1016/j.aml.2013.05.006
    [10] D. V. Lukyanenko, M. A. Shishlenin, V. T. Volkov, Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data, Commun. Nonlinear Sci., 54 (2018), 233-247. doi: 10.1016/j.cnsns.2017.06.002
    [11] L. Beilina, M. V. Klibanov, A globally convergent numerical method for a coefficient inverse problem, SIAM J. Sci. Comput., 31 (2008), 478-509. doi: 10.1137/070711414
    [12] A. B. Bakushinskii, M. V. Klibanov, N. A. Koshev, Carleman weight functions for a globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs, Nonlinear Anal. Real., 34 (2017), 201-224. doi: 10.1016/j.nonrwa.2016.08.008
    [13] F. Z. Geng, S. P. Qian, An optimal reproducing kernel method for linear nonlocal boundary value problems, Appl. Math. Lett., 77 (2018), 49-56. doi: 10.1016/j.aml.2017.10.002
    [14] F. Z. Geng, A new higher order accurate reproducing kernel-based approach for boundary value problems, Appl. Math. Lett., 107 (2020), 106494.
    [15] F. Z. Geng, Numerical methods for solving Schröinger equations in complex reproducing kernel Hilbert spaces, Math. Sci., (2020), https://doi.org/10.1007/s40096-020-00337-6.
    [16] X. Y. Li, B. Y. Wu, A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations, J. Comput. Appl. Math., 311 (2017), 387-393. doi: 10.1016/j.cam.2016.08.010
    [17] X. Y. Li, B. Y. Wu, A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43 (2015), 108-113. doi: 10.1016/j.aml.2014.12.012
    [18] X. Y. Li, B. Y. Wu, A new kernel functions based approach for solving 1-D interface problems, Appl. Math. Comput., 380 (2020), 125276.
    [19] X. Y. Li, Y. Gao, B. Y. Wu, Approximate solutions of Atangana-Baleanu variable order fractional problems, AIMS Math., 5 (2020), 2285-2294. doi: 10.3934/math.2020151
    [20] M. Q. Xu, Z. H. Zhao, J. Niu, et al. A simplified reproducing kernel method for 1-D elliptic type interface problems, J. Comput. Appl. Math., 351 (2019), 29-40. doi: 10.1016/j.cam.2018.10.027
    [21] H. Sahihi, S. Abbasbandy, T. Allahviranloo, Computational method based on reproducing kernel for solving singularly perturbed differential-difference equations with a delay, Appl. Math. Comput., 361 (2019), 583-598.
    [22] O. Abu Arqub, B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos Soliton. Fract., 125 (2019), 163-170. doi: 10.1016/j.chaos.2019.05.025
    [23] O. Abu Arqub, Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates, J. Appl. Math. Comput., 59 (2019), 227-243. doi: 10.1007/s12190-018-1176-x
    [24] O. Abu Arqub, M. Al-Smadi, Fuzzy conformable fractional differential equations: Novel extended approach and new numerical solutions, Soft Comput., 2020, https://doi.org/10.1007/s00500-020-04687-0.
    [25] O. Abu Arqub, Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis, Fund. Inform., 166 (2019), 111-137. doi: 10.3233/FI-2019-1796
    [26] A. Akgül, Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell-Eyring non-Newtonian fluid, J. Taibah Univ. Sci., 13 (2019), 858-863. doi: 10.1080/16583655.2019.1651988
    [27] A. Akgül, E. K. Akgül, S. Korhan, New reproducing kernel functions in the reproducing kernel Sobolev spaces, AIMS Math., 5 (2020), 482-496. doi: 10.3934/math.2020032
    [28] Z. H. Zhao, Y. Z. Lin. J. Niu, Convergence order of the reproducing kernel method for solving boundary value problems, Math. Model. Anal., 21 (2016), 466-477. doi: 10.3846/13926292.2016.1183240
    [29] H. Sahihi, T. Allahviranloo, S. Abbasbandy, Solving system of second-order BVPs using a new algorithm based on reproducing kernel Hilbert space, Appl. Numer. Math., 151 (2020), 27-39. doi: 10.1016/j.apnum.2019.12.008
    [30] N. Aronszajn, Theory of reproducing kernel, Trans. A.M.S., 168 (1950), 1-50.
    [31] H. Wendland, Scattered data approximation, New York: Cambridge University Press, 2004.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3441) PDF downloads(166) Cited by(19)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog