Citation: Zhenyu Jin, Jianrong Wu. On the Ulam stability of fuzzy differential equations[J]. AIMS Mathematics, 2020, 5(6): 6006-6019. doi: 10.3934/math.2020384
[1] | S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, Inc., New York, 1964. |
[2] | D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U. S. A., 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222 |
[3] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, P. Am. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1 |
[4] | M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk-Dydakt. Prace Mat., 13 (1993), 259-270. |
[5] | C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1998), 373-380. |
[6] | T. Miura, On the Hyers-Ulam stability of a differentiable map, Sci. Math. Jpn., 55 (2002), 17-24. |
[7] | T. Miura, S. Takahasi, H. Choda, On the Hyers-Ulam stability of real continuous function valued differentiable map, Tokyo J. Math., 24 (2001), 467-476. doi: 10.3836/tjm/1255958187 |
[8] | S. E. Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation y' = λy, Bull. Korean Math. Soc., 39 (2002), 309-315. doi: 10.4134/BKMS.2002.39.2.309 |
[9] | O. Kaleva, Fuzzy differential equations, Fuzzy Set. Syst., 24 (1987), 301-317. doi: 10.1016/0165-0114(87)90029-7 |
[10] | O. Kaleva, The Cauchy problem for fuzzy differential equations, Fuzzy Set. Syst., 35 (1990), 389-396. doi: 10.1016/0165-0114(90)90010-4 |
[11] | P. E. Kloeden, Remarks and Peano-like theorems for fuzzy differential equations, Fuzzy Set. Syst., 44 (1991), 161-163. doi: 10.1016/0165-0114(91)90041-N |
[12] | S. Tomasiello, J. E. Macías-Díaz, Note on a Picard-like Method for Caputo Fuzzy Fractional Differential Equations, Appl. Math. Inform. Sci., 11 (2017), 281-287. doi: 10.18576/amis/110134 |
[13] | M. Rashid, N. Mehmood, S. Shaheen, Existence and uniqueness of approximatesolutions to Cauchy problem of complex fuzzy differential equations, J. Intell. Fuzzy Syst., 36 (2019) 3567-3577. |
[14] | C. X. Wu, S. J. Song, E. S. Lee, Approximate solutions, existence, and uniqueness of the Cauchy problem of fuzzy differential equations, J. Math. Anal. Appl., 202 (1996), 629-644. |
[15] | M. Friedman, M. Ma, A. Kandel, Numerical solutions of fuzzy differential equations, Fuzzy Set. Syst., 105 (1999), 133-138. doi: 10.1016/S0165-0114(97)00233-9 |
[16] | J. J. Buckley, E. Eslami, T. Feuring, Fuzzy differential equations, Fuzzy Set. Syst., 110 (2000), 43-54. doi: 10.1016/S0165-0114(98)00141-9 |
[17] | D. Karpenko, R. A. V. Gorder, A. Kandel, The Cauchy problem for complex fuzzy differential equations, Fuzzy Set. Syst., 245 (2014), 18-29. doi: 10.1016/j.fss.2013.11.001 |
[18] | J. E. Macías-Díaz, S. Tomasiello, A differential quadrature-based approach à la Picard for systems of partial differential equations associated with fuzzy differential equations, J. comput. Appl. Math., 299 (2016), 15-23. doi: 10.1016/j.cam.2015.08.009 |
[19] | E. J. Villamizar-Roa, V. Angulo-Castillo, Y. Chalco-Cano, Existence of solutions to fuzzy differential equations with generalized Hukuhara derivative via contractive-like mapping principles, Fuzzy Set. Syst., 265 (2015), 24-38. doi: 10.1016/j.fss.2014.07.015 |
[20] | A. Khastan, R. Rodríguez-López, On the solutions to first order linear fuzzy differential equations, Fuzzy Set. Syst., 295 (2016), 114-135. doi: 10.1016/j.fss.2015.06.005 |
[21] | D. Qiu, W. Zhang, C. Lu, On fuzzy differential equations in the quotient space of fuzzy numbers, Fuzzy Set. Syst., 295 (2016), 72-98. doi: 10.1016/j.fss.2015.03.010 |
[22] | J. R. Wu, Z. Y. Jin, A note on Ulam stability of some fuzzy number-valued functional equations, Fuzzy Set. Syst., 375 (2019), 191-195. doi: 10.1016/j.fss.2018.10.018 |
[23] | P. Diamond, Stability and Periodicity in Fuzzy Differential Equations, IEEE T. Fuzzy Syst., 8 (2000), 583-590. doi: 10.1109/91.873581 |
[24] | S. J. Song, C. Wu, E. S. Lee, Asymptotic equilibrium and stability of fuzzy differential equations, Comput. Math. Appl., 49 (2005), 1267-1277. doi: 10.1016/j.camwa.2004.03.016 |
[25] | C. Yakar, M. Cicek, M. B. Gücen, Practical stability, boundedness criteria and Lagrange stability of fuzzy differential systems, Comput. Math. Appl., 64 (2012), 2118-2127. doi: 10.1016/j.camwa.2012.04.008 |
[26] | J. U. Jeong, Stability of a periodic solution for fuzzy differential equations, J. Appl. Math. Comput., 13 (2003), 217-222. doi: 10.1007/BF02936087 |
[27] | W. Zhu, Stability analysis of fuzzy differential equations with delay, Ann. Diff. Eqs., 23 (2007), 603-607. |
[28] | Y. Zhu, Stability analysis of fuzzy linear differential equations, Fuzzy Optim. Decis. Ma., 9 (2010), 169-186. doi: 10.1007/s10700-010-9080-3 |
[29] | Y. Shen, F. Wang, A fixed point approach to the Ulam stability of fuzzy differential equations under generalized differentiability, J. Intell. Fuzzy Syst., 30 (2016), 3253-3260. doi: 10.3233/IFS-152073 |
[30] | Y. Shen, On the Ulam stability of first order linear fuzzy differential equations under generalized differentiability, Fuzzy Set. Syst., 280 (2015), 27-57. doi: 10.1016/j.fss.2015.01.002 |
[31] | W. Ren, Z. Yang, X. Sun, et al. Hyers-Ulam stability of Hermite fuzzy differential equations and fuzzy Mellin transform, J. Intell. Fuzzy Syst., 35 (2018), 3721-3731. doi: 10.3233/JIFS-18523 |
[32] | Y. Wang, S. Sun, Existence, uniqueness and Eq-Ulam type stability of fuzzy fractional differential equations with parameters, J. Intell. Fuzzy Syst., 36 (2019) 5533-5545. |
[33] | B. Bede, I. J. Rudas, A. L. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Inform. Sciences, 177 (2007), 1648-1662. doi: 10.1016/j.ins.2006.08.021 |
[34] | J. Ban, Ergodic theorems for random compact sets and fuzzy variables in Banach spaces, Fuzzy Set. Syst., 44 (1991), 71-82. doi: 10.1016/0165-0114(91)90034-N |