Research article

On the Ulam stability of fuzzy differential equations

  • Received: 10 April 2020 Accepted: 20 July 2020 Published: 23 July 2020
  • MSC : 03E72, 34D99, 34G99

  • Ulam stability problems have received considerable attention in the field of differential equations. However, how to effectively build the fuzzy model for Ulam stability problems is less attractive due to varies of differentiabilities requirements. The paper discusses the Ulam stability of fuzzy differential equations in Banach spaces. After introducing the new definitions of differentiabilities for fuzzy number-valued mappings, we give some important properties about these differentiabilities. On these bases, with different differentiabilities and conditions, we prove the Ulam stability of three kinds of fuzzy differential equations. The obtained conclusions generalize the existing results.

    Citation: Zhenyu Jin, Jianrong Wu. On the Ulam stability of fuzzy differential equations[J]. AIMS Mathematics, 2020, 5(6): 6006-6019. doi: 10.3934/math.2020384

    Related Papers:

  • Ulam stability problems have received considerable attention in the field of differential equations. However, how to effectively build the fuzzy model for Ulam stability problems is less attractive due to varies of differentiabilities requirements. The paper discusses the Ulam stability of fuzzy differential equations in Banach spaces. After introducing the new definitions of differentiabilities for fuzzy number-valued mappings, we give some important properties about these differentiabilities. On these bases, with different differentiabilities and conditions, we prove the Ulam stability of three kinds of fuzzy differential equations. The obtained conclusions generalize the existing results.


    加载中


    [1] S. M. Ulam, Problems in Modern Mathematics, John Wiley & Sons, Inc., New York, 1964.
    [2] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U. S. A., 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222
    [3] T. M. Rassias, On the stability of the linear mapping in Banach spaces, P. Am. Math. Soc., 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1
    [4] M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk-Dydakt. Prace Mat., 13 (1993), 259-270.
    [5] C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1998), 373-380.
    [6] T. Miura, On the Hyers-Ulam stability of a differentiable map, Sci. Math. Jpn., 55 (2002), 17-24.
    [7] T. Miura, S. Takahasi, H. Choda, On the Hyers-Ulam stability of real continuous function valued differentiable map, Tokyo J. Math., 24 (2001), 467-476. doi: 10.3836/tjm/1255958187
    [8] S. E. Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation y' = λy, Bull. Korean Math. Soc., 39 (2002), 309-315. doi: 10.4134/BKMS.2002.39.2.309
    [9] O. Kaleva, Fuzzy differential equations, Fuzzy Set. Syst., 24 (1987), 301-317. doi: 10.1016/0165-0114(87)90029-7
    [10] O. Kaleva, The Cauchy problem for fuzzy differential equations, Fuzzy Set. Syst., 35 (1990), 389-396. doi: 10.1016/0165-0114(90)90010-4
    [11] P. E. Kloeden, Remarks and Peano-like theorems for fuzzy differential equations, Fuzzy Set. Syst., 44 (1991), 161-163. doi: 10.1016/0165-0114(91)90041-N
    [12] S. Tomasiello, J. E. Macías-Díaz, Note on a Picard-like Method for Caputo Fuzzy Fractional Differential Equations, Appl. Math. Inform. Sci., 11 (2017), 281-287. doi: 10.18576/amis/110134
    [13] M. Rashid, N. Mehmood, S. Shaheen, Existence and uniqueness of approximatesolutions to Cauchy problem of complex fuzzy differential equations, J. Intell. Fuzzy Syst., 36 (2019) 3567-3577.
    [14] C. X. Wu, S. J. Song, E. S. Lee, Approximate solutions, existence, and uniqueness of the Cauchy problem of fuzzy differential equations, J. Math. Anal. Appl., 202 (1996), 629-644.
    [15] M. Friedman, M. Ma, A. Kandel, Numerical solutions of fuzzy differential equations, Fuzzy Set. Syst., 105 (1999), 133-138. doi: 10.1016/S0165-0114(97)00233-9
    [16] J. J. Buckley, E. Eslami, T. Feuring, Fuzzy differential equations, Fuzzy Set. Syst., 110 (2000), 43-54. doi: 10.1016/S0165-0114(98)00141-9
    [17] D. Karpenko, R. A. V. Gorder, A. Kandel, The Cauchy problem for complex fuzzy differential equations, Fuzzy Set. Syst., 245 (2014), 18-29. doi: 10.1016/j.fss.2013.11.001
    [18] J. E. Macías-Díaz, S. Tomasiello, A differential quadrature-based approach à la Picard for systems of partial differential equations associated with fuzzy differential equations, J. comput. Appl. Math., 299 (2016), 15-23. doi: 10.1016/j.cam.2015.08.009
    [19] E. J. Villamizar-Roa, V. Angulo-Castillo, Y. Chalco-Cano, Existence of solutions to fuzzy differential equations with generalized Hukuhara derivative via contractive-like mapping principles, Fuzzy Set. Syst., 265 (2015), 24-38. doi: 10.1016/j.fss.2014.07.015
    [20] A. Khastan, R. Rodríguez-López, On the solutions to first order linear fuzzy differential equations, Fuzzy Set. Syst., 295 (2016), 114-135. doi: 10.1016/j.fss.2015.06.005
    [21] D. Qiu, W. Zhang, C. Lu, On fuzzy differential equations in the quotient space of fuzzy numbers, Fuzzy Set. Syst., 295 (2016), 72-98. doi: 10.1016/j.fss.2015.03.010
    [22] J. R. Wu, Z. Y. Jin, A note on Ulam stability of some fuzzy number-valued functional equations, Fuzzy Set. Syst., 375 (2019), 191-195. doi: 10.1016/j.fss.2018.10.018
    [23] P. Diamond, Stability and Periodicity in Fuzzy Differential Equations, IEEE T. Fuzzy Syst., 8 (2000), 583-590. doi: 10.1109/91.873581
    [24] S. J. Song, C. Wu, E. S. Lee, Asymptotic equilibrium and stability of fuzzy differential equations, Comput. Math. Appl., 49 (2005), 1267-1277. doi: 10.1016/j.camwa.2004.03.016
    [25] C. Yakar, M. Cicek, M. B. Gücen, Practical stability, boundedness criteria and Lagrange stability of fuzzy differential systems, Comput. Math. Appl., 64 (2012), 2118-2127. doi: 10.1016/j.camwa.2012.04.008
    [26] J. U. Jeong, Stability of a periodic solution for fuzzy differential equations, J. Appl. Math. Comput., 13 (2003), 217-222. doi: 10.1007/BF02936087
    [27] W. Zhu, Stability analysis of fuzzy differential equations with delay, Ann. Diff. Eqs., 23 (2007), 603-607.
    [28] Y. Zhu, Stability analysis of fuzzy linear differential equations, Fuzzy Optim. Decis. Ma., 9 (2010), 169-186. doi: 10.1007/s10700-010-9080-3
    [29] Y. Shen, F. Wang, A fixed point approach to the Ulam stability of fuzzy differential equations under generalized differentiability, J. Intell. Fuzzy Syst., 30 (2016), 3253-3260. doi: 10.3233/IFS-152073
    [30] Y. Shen, On the Ulam stability of first order linear fuzzy differential equations under generalized differentiability, Fuzzy Set. Syst., 280 (2015), 27-57. doi: 10.1016/j.fss.2015.01.002
    [31] W. Ren, Z. Yang, X. Sun, et al. Hyers-Ulam stability of Hermite fuzzy differential equations and fuzzy Mellin transform, J. Intell. Fuzzy Syst., 35 (2018), 3721-3731. doi: 10.3233/JIFS-18523
    [32] Y. Wang, S. Sun, Existence, uniqueness and Eq-Ulam type stability of fuzzy fractional differential equations with parameters, J. Intell. Fuzzy Syst., 36 (2019) 5533-5545.
    [33] B. Bede, I. J. Rudas, A. L. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Inform. Sciences, 177 (2007), 1648-1662. doi: 10.1016/j.ins.2006.08.021
    [34] J. Ban, Ergodic theorems for random compact sets and fuzzy variables in Banach spaces, Fuzzy Set. Syst., 44 (1991), 71-82. doi: 10.1016/0165-0114(91)90034-N
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2912) PDF downloads(215) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog